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Automated verification of security protocols is nowadays well understood for authentication
and (weak notions of) confidentiality properties. These properties can be stated as reachability
properties, stating that a “bad state” cannot be reached. There is also impressive tool support for
such reachability properties [4, 1, 8, 7, 10]. However, many interesting properties such as anonymity,
unlinkability and stronger notions of confidentiality (e.g. confidentiality of a password that may be
subject to dictionary attacks) are modelled as an equivalence property, which cannot be expressed
in terms of reachability. The tool support for equivalence properties is currently rather restricted.
Tools such as Proverif, tamarin and Maude-NPA have been recently extended to verify a strong
notion of equivalence called diff-equivalence [3, 2, 9]. This notion is however too strong for some
applications. When restricting the analysis to a bounded number of sessions several tools have
been developed:

– The SPEC tool [11] decides a symbolic bisimulation, which implies trace equivalence, for pro-
tocols that use a fixed set of classical cryptographic primitives and no else branches.

– The APTE tool [6] is able to decide trace equivalence for general processes, i.e., including else
branches, and a fixed set of classical cryptographic primitives.

– The AKISS tool [5] is also able to check trace equivalence for processes without else branches
and supports various cryptographic primitives.

One of the objectives of the Sequoia project (Task 2.1) was to generalize the procedure of AKISS
to support even more cryptographic primitives, i.e., more equational theories, in particular theories
reflecting algebraic properties such as those for Diffie-Hellman exponentiation and exclusive or. In
the attached report (which is submitted for publication), we present a novel procedure that allows
to verify equivalence between finite processes, i.e., processes without replication, for protocols
that rely on various cryptographic primitives including exclusive or (xor). Our procedure has
been implemented in the recent tool AKISS, and has been effectively tested on several examples.
Some of the examples were outside the scope of existing tools, including checking unlinkability on
various RFID protocols, and resistance against guessing attacks on protocols that use xor.

References

1. Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna, Jorge
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protocol indistinguishability and its verification using Maude-NPA. In 10th International Workshop
on Security and Trust Management STM’14, volume 8743, pages 162–177. Springer, 2014.

10. Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. The tamarin prover for the sym-
bolic analysis of security protocols. In 25th International Conference on Computer Aided Verification
(CAV’13), volume 8044 of LNCS, pages 696–701. Springer, 2013.

11. Alwen Tiu and Jeremy Dawson. Automating open bisimulation checking for the spi-calculus. In 23rd
Computer Security Foundations Symposium (CSF’10), pages 307–321. IEEE Comp. Soc. Press, 2010.



Verification of privacy-type properties for security protocols with XOR

Abstract—In symbolic verification of security protocols, process
equivalences have recently been used extensively to model
strong secrecy, anonymity and unlinkability properties. How-
ever, tool support for automated verification of equivalence
properties is still restricted compared to trace properties, used
for modeling authentication and weak notions of secrecy.

In this paper, we present a novel procedure that allows
to verify equivalence between finite processes, i.e., processes
without replication, for protocols that rely on various crypto-
graphic primitives including exclusive or (xor). Our procedure
has been implemented in the recent tool AKISS, and has been
effectively tested on several examples. Some of the examples
were outside the scope of existing tools, including checking
unlinkability on various RFID protocols, and resistance against
guessing attacks on protocols that use xor.

1. Introduction

Protecting authenticity and confidentiality of transac-
tions by the use of cryptographic means has become stan-
dard practice. Security protocols such as TLS, SSH, or Ker-
beros are nowadays widely deployed. However, history has
also shown that designing secure protocols is challenging,
because of the concurrent execution of the protocols in
an adversarial environment, controlling the communication
channels. Indeed, many attacks exploit flaws in the protocol
logic rather than, or sometimes combined with, weaknesses
in the underlying cryptographic primitives, e.g., [11].

The use of automated verification tools has been one
successful means to detect such logical flaws. During the last
two decades many efficient protocol verification tools have
been developed, e.g., ProVerif [14], AVISPA [6], Maude-
NPA [26], Tamarin [34]. They have been successfully used
to discover many flaws in both academic protocols [31], as
well as standards [9] and deployed protocols [5].

Authentication and (weak forms of) confidentiality are
modelled as trace properties: they are checked by verify-
ing that each possible trace of the system satisfies some
predicate. The verification of this class of properties is
nowadays well understood and efficient tool support exists,
as discussed above. However, some properties such as re-
sistance against guessing attacks, strong secrecy, anonymity
and unlinkability [22], [25], [4], [15] are expressed in terms
of indistinguishability. This requires a notion of equivalence
between processes (e.g. [2], [1]).

Automated verification of equivalence properties is not
yet as mature as for trace properties. Several existing tools
have recently been extended with the possibility to verify a

strong equivalence called diff-equivalence [13], [10], [33].
It analyses bi-processes, which correspond to two processes
that only differ in the messages that they use, but not in
their control flow. This notion is however too strong for
some applications. Dedicated tools for verifying process
equivalences on security protocols, in the case of a bounded
number of sessions, have also been developed. The SPEC
tool [35] decides a symbolic bisimulation, which implies
trace equivalence, for protocols that use a fixed set of clas-
sical cryptographic primitives. It does not support protocols
with else branches. The APTE tool [17] is able to decide
trace equivalence for general processes, i.e., including else
branches, and a fixed set of classical cryptographic primi-
tives. The AKISS tool [16] is also able to check trace equiv-
alence for processes without else branches and supports
various cryptographic primitives. This includes most of the
classical primitives (e.g. encryption, signature) but also some
others (e.g. blind signatures, trapdoor bit commitment).

Some protocols use cryptographic primitives that have
algebraic properties, see [23] for a survey. Bitwise exclusive
or (xor) is such a primitive, and protocols implemented
on low-power devices, such as RFID tags, often rely on
it because of its computational efficiency [36]. There exist
many results for taking into account algebraic properties
for trace based properties, in particular for the xor operator
(e.g. [21], [19], [30]). However, for equivalence properties,
there are only a few procedures taking into account algebraic
properties. Delaune et al. [24] have studied equivalence of
constraint systems which is sufficient to decide some equiv-
alences when protocols are restricted to a bounded number
of sessions. In particular the theory for xor is shown to be
decidable in PTIME. However, they only consider the case
of pure group theories, not allowing any other equations,
e.g., those modelling encryption or pairs. When considering
an unbounded number of sessions, tools that can verify diff-
equivalence do not effectively support xor. The Tamarin tool
supports a theory for Diffie-Hellman exponentiations, but
not xor. The Maude-NPA tool supports xor in principle, but
it does not terminate even on simple examples.

AKISS in a nutshell. The procedure that we present in this
paper builds on previous work by Chadha et al. [16], and
its implementation in the AKISS tool. We therefore give a
short overview of the tool and the underlying theory.

The AKISS tool is able to check equivalence properties
for protocols modelled as processes in a calculus similar to
the applied pi calculus [1], but without else branches nor
replication (i.e., for bounded number of sessions). Actually,
it checks for two equivalences which over- and under-



approximate the standard notion of trace equivalence for
cryptographic protocols, allowing to either prove or disprove
trace equivalence. The coarser of the two equivalences hap-
pens to coincide with the standard notion of trace equiv-
alence on a large class of processes, namely the class of
determinate processes.

The cryptographic primitives supported by AKISS are
the ones which can be expressed through a convergent
rewrite system that enjoys the finite variant property [20].
Even, if termination is only guaranteed for the subclass of
subterm convergent rewrite theories, it is also achieved in
practice on several examples outside this class.

The procedure is based on a fully abstract modelling
of the symbolic traces of the protocols into first-order
Horn clauses and a dedicated resolution procedure. Given
a symbolic trace, i.e., an interleaving, of a process P , we
translate it into a set of first-order Horn clauses, called
seed statements. Then, a resolution procedure is applied to
the seed statements which constructs a set of statements
that have a simple form, called solved statements. It is
shown that this set of solved statements form a sound and
complete representation of the symbolic trace under study.
Therefore, only the set of solved statements is required to
decide whether the given symbolic trace is trace included
in Q. To decide trace equivalence between processes P
and Q, the procedure checks whether each symbolic trace of
process P is included in Q as described above, and similarly
for symbolic traces in Q.

Our contributions. We design a new procedure, extending
work by Chadha et al. [16], for verifying equivalence prop-
erties on protocols that use the xor operator. Protocols are
modeled in a replication-free variant of the applied pi cal-
culus (Section 2). As the original procedure, briefly recalled
above, our procedure translates protocols into Horn clauses
and applies a dedicated resolution procedure (Section 3).
The xor operator is not supported by AKISS because it
cannot be modelled by a convergent rewrite system. Our
approach consists in first orienting the equations of xor
into a convergent rewrite system modulo associativity and
commutativity (AC). We generalize Chadha et al.’s procedure
to reason modulo AC (Section 4). A simple and direct gen-
eralisation would preserve soundness and completeness but
fails to terminate even on very simple examples. We there-
fore completely redesign the resolution procedure. Using a
marking we forbid certain resolution steps that would yield
non-termination. Showing that these forbidden resolution
steps are indeed not necessary requires essential changes
in the completeness proof. We finally present how this
yields an effective algorithm for checking trace equivalence
(Section 5).

Our strategy does not ensure termination in general.
However, we have implemented an extension of the AKISS
tool and demonstrate the effectiveness of our tool on several
examples, including various RFID protocols [36], and pass-
word based protocols using xor that aim at resisting against
guessing attacks [28], [29]. To the best of our knowledge,
these protocols are out of scope of existing tools and our tool

is the first that can effectively analyse equivalence properties
for protocols that use xor.

2. Our process calculus

This section introduces our process calculus, giving its
syntax and semantics, as well as the notion of equivalence
that is studied in this paper. Our calculus has similarities
with the applied pi calculus [1] which has been extensively
used to specify and verify security protocols. Participants in
a protocol are modeled as processes, and the communication
between them is modeled by means of message passing.

2.1. Term algebra

As usual in symbolic models we model messages as
terms. We consider several sets of atomic terms:
• N is a set of names, partitioned into the disjoint sets
Nprv and Npub of private and public names;

• X is the set of message variables, denoted x, y, etc.;
• W = {w1,w2, . . .} is the set of parameters.
Intuitively, private names in Nprv represent nonces or

keys generated by honest participants, while public names
in Npub represent identifiers available both to the attacker
and to honest participants, and attacker nonces. Parameters
are used by the attacker as pointers to refer to messages that
were previously output by the protocol participants.

We consider a signature Σ, i.e., a finite set of function
symbols together with their arity. As usual, a function
symbol of arity 0 is called a constant. Given a signature Σ
and a set of atoms A we denote by T (Σ,A) the set of
terms, defined as the smallest set that contains A and that
is closed under application of function symbols in Σ. We
denote by vars(t) the set of variables occurring in a term t.
As usual, a substitution is a function from variables to terms,
that is lifted to terms homomorphically. The application of
a substitution σ to a term u is written uσ, and we denote
dom(σ) its domain, i.e. dom(σ) = {x | σ(x) 6= x}. We
denote the identity substitution whose domain is the empty
set by ∅. The positions of a term are defined as usual.

We associate an equational theory E to the signature Σ.
The equational theory is defined by a set of equations of
the form M = N where M,N ∈ T (Σ,X ), and induces an
equivalence relation over terms: =E is the smallest congru-
ence relation on terms, which contains all equations M = N
in E, and that is closed under substitution of terms for
variables. To model protocols that only rely on the exclusive-
or operator, we consider Σxor = {⊕, 0}, and the equational
theory Exor defined by the equations given below:

x⊕ x = 0 x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊕ 0 = x x⊕ y = y ⊕ x

We denote by AC the equational theory defined by the
two equations on the right. We may also want to consider
additional primitives, e.g. pairs, symmetric and asymmetric
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encryptions, signatures, hashes, etc. This can be done by
extending the signature as well as the equational theory.

Example 1. Let Σ+
xor = Σxor ] {〈·, ·〉, proj1, proj2, h}, and

consider the equational theory E+
xor defined by adding

the following equations to Exor:

proj1(〈x, y〉) = x, and proj2(〈x, y〉) = y.

The symbol 〈·, ·〉 models pairs. Projection functions are
denoted by proj1 and proj2. We use the unary symbol h
to model a cryptographic hash function. Let id ∈ Npub

and r1, r2, k ∈ Nprv. Intuitively, id represents the (pub-
lic) identity of a participant, while r1 and r2 represent
random numbers and k a key, a priori unknown to the
attacker. Let t0 = 〈id ⊕ r2, h(〈r1, k〉) ⊕ r2〉. We have
that (proj1(t0)⊕ id)⊕ proj2(t0) =E+

xor
h(〈r1, k〉).

In this paper we consider a signature Σ such that
Σxor ⊆ Σ, together with an equational theory generated by
a set of equations of the form

E = Exor ∪ {M = N | M,N ∈ T (Σ r Σxor,X )}.

Hence, E models xor in combination with any other equa-
tional theory that is disjoint from Exor. This disjointness
hypothesis is convenient as it provides a generic way to
compute variants of a term. It is however not necessary as
soon as the resulting equational theory E enjoys the finite
variant property and an effective way to compute them.

2.2. Finite variant property

A rewrite system R is a set of rewrite rules of the form
`→ r where `, r ∈ T (Σ,X ), and vars(r) ⊆ vars(`). A
term t can be rewritten in one step (modulo AC) to u,
denoted t→R,AC u, if there exists a position p in term t, a
rule `→ r in R and a substitution σ such that:
• t|p =AC `σ, i.e. the term at position p in t is equal

(modulo AC) to `σ; and
• u = t[rσ]p, i.e. u is the term obtained by replacing in
t, the subterm t|p with rσ.

The relation →∗R,AC denotes the transitive and reflexive
closure of →R,AC.

A rewrite system R is AC-convergent if it is:
• confluent: for any t, t1, t2 such that t →∗R,AC t1 and
t →∗R,AC t2 there exists u such that t1 →∗R,AC u and
t2 →∗R,AC u; and

• terminating: it does not admit any infinite sequence
t0 →R,AC t1 →R,AC t2 →R,AC . . .

We denote by t↓R,AC (or simply t↓) the normal form of a
term t. In the following we only consider equational theories
E that can be represented by a rewrite system R which is
AC-convergent, i.e., we have that:

u =E v ⇔ u↓R,AC =AC v↓R,AC.

Example 2. Continuing Example 1, we consider the fol-
lowing rewrite system:

R+
xor =





x⊕ (x⊕ y)→ y
x⊕ 0→ x
x⊕ x→ 0

proj1(〈x, y〉)→ x
proj2(〈x, y〉)→ y

Actually, we have that R+
xor is AC-convergent and it rep-

resents the equational theory E+
xor defined in Example 1.

Let t0 = 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉. We have that:

proj1(t0)⊕ proj2(t0)
→R,AC (id ⊕ r2)⊕ proj2(t0)
→R,AC (id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)
→R,AC id ⊕ h(〈r1, k〉)

Given an AC-convergent rewrite system R, we now
define the notion of complete set of variants, which was
first introduced in [20].

Definition 1. Consider a rewrite system R that is AC-
convergent, and a set of terms T . A set of substitutions
variantsR,AC(T ) is called a complete set of variants for
the set of terms T , if for any substitution ω there exist
σ ∈ variantsR,AC(T ), and a substitution τ such that:
• xω↓ =AC xσ↓τ for any x ∈ vars(T ), and
• (tω)↓ =AC (tσ)↓τ for any t ∈ T .

The set of variants of t represents a pre-computation
such that the normal form of any instance of t is equal
(modulo AC) to an instance of tσ↓ for some σ in the set
of variants, without the need to apply further rewrite steps.
A rewrite system has the finite variant property if for any
sequence of terms a finite, complete set of variants exists
and is effectively computable. For the sake of readabil-
ity, we will often write variantsR,AC(t1, . . . , tn) instead of
variantsR,AC({t1, . . . , tn}).

Example 3. Considering the equational theory E+
xor intro-

duced in Example 1, and the rewrite system defined
in Example 2. We have σ = {x 7→ 〈x1, x2〉} ∈
variantsR,AC(proj1(x)). Actually, σ together with the
identity substitution form a complete set of variants for
proj1(x).
The following substitutions, together with the identity
substitution, form a complete set of variants for x⊕ y:
• σ1 = {x 7→ y ⊕ z}, σ′1 = {y 7→ x⊕ z},
• σ2 = {x 7→ x′ ⊕ z, y 7→ y′ ⊕ z},
• σ3 = {y 7→ x}, and
• σ4 = {x 7→ 0}, σ′4 = {y 7→ 0}.
This finite variant property is satisfied by many equa-

tional theories interesting for modelling cryptographic proto-
cols, e.g., symmetric and asymmetric encryption, signatures,
blind signatures, zero-knowledge proofs. Moreover, such
a property plays an important role regarding equational
unification. It implies the existence of a complete set of
unifiers, and gives us a way to compute it effectively [27].

Definition 2. Consider an AC-convergent rewrite system R
(possibly empty). Let Γ = {u1 = v1, . . . , uk = vk} be
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a set of equations. A set of substitutions Σ is called a
complete set of R,AC-unifiers for Γ if:

1) each element σ ∈ Σ is such that uiσ↓ =AC viσ↓ for
i ∈ {1, . . . , k};

2) for each θ such that uiθ↓ =AC viθ↓ for any i ∈
{1, . . . , k}, there exists σ ∈ Σ and a substitution τ
such that xθ↓ =AC xστ↓ for any x ∈ vars(Γ).

We denote by csuR,AC(Γ) (or csuAC(Γ) when R = ∅)
such a set.

2.3. Process calculus

Syntax. Let Ch be a set of public channel names. A
protocol is modeled by a finite set of processes generated
by the following grammar:

P, P ′, P1, P2 ::= 0 null process
in(c, x).P input
out(c, t).P output
[s = t].P test

where x ∈ X , s, t ∈ T (Σ,N ∪ X ), and c ∈ Ch.

As usual, a receive action in(c, x) acts as a binding
construct for the variable x. We assume the usual definitions
of free and bound variables for processes. We also assume
that each variable is bound at most once. A process is
ground if it does not contain any free variables. For sake of
conciseness, we sometimes omit the null process at the end
of a process.

Following [16], we only consider a minimalistic core
calculus that does not include operators for parallel compo-
sition. Given that we only consider a bounded number of
sessions (i.e., a process calculus without replication) and that
we aim at verifying trace equivalence, parallel composition
can be added as syntactic sugar to denote the set of all
interleavings at a cost of an exponential blow-up (see [16]).
Therefore, in this paper, a protocol is simply a finite set of
ground processes.

Example 4. Following a description given in [36], we con-
sider the RFID protocol depicted in Figure 1. The reader
and the tag id share the secret key k. The reader starts
by sending a nonce r1. The tag generates a nonce r2 and
computes the message t0 = 〈id ⊕ r2, h(〈r1, k〉) ⊕ r2〉
introduced in Example 1. When receiving such a mes-
sage, the reader will be able to retrieve r2 from the first
component, and by xoring it with the second component,
he obtains h(〈r1, k〉).
Using our formalism, we can model the two roles of this
protocol with the following ground processes:

Ptag = in(c, x). out(c, 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉). 0

Preader = out(c, r1). in(c, y).
[(proj1(y)⊕ id)⊕ proj2(y) = h(〈r1, k〉)]. 0

where r1, r2, k ∈ Nprv, id ∈ Npub, and x, y ∈ X . The
protocol itself corresponds to the set of ground processes
obtained by interleaving these two roles.

READER

k, id

TAG

k, id

nonce r1 r1

nonce r2
〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉

id ⊕ (id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)
?
= h(〈r1, k〉)

Figure 1: The KCL protocol

The aim of this protocol is not only to authenticate
the tag but also to ensure its unlinkability. An attacker
should not be able to observe whether he has seen the
same tag twice or two different tags. We will formalize
this later on, relying on a notion of trace equivalence,
and we will show that this protocol fails to achieve this
unlinkability property.

Semantics. To define the semantics of our calculus,
we introduce the notion of deducibility. At a particular point
in time, after some interaction with a protocol, an attacker
may know a sequence of messages t1, . . . , t` ∈ T (Σ,N ).
Such a sequence is organised into a frame

ϕ = {w1 7→ t1, . . . ,w` 7→ t`}

that is a substitution with domain dom(ϕ) = {w1, . . . ,w`},
and size |ϕ| = `.

Definition 3. Let ϕ be a frame, t ∈ T (Σ,N ) and R ∈
T (Σ,Npub∪dom(ϕ)). We say that t is deducible from ϕ
using R, written ϕ `R t, when Rϕ↓ =AC t↓.
Intuitively, an attacker is able to deduce new messages

by applying function symbols in Σ to public names (those
in Npub) and terms he already knows (those in ϕ). The
term R is called a recipe.

Example 5. Continuing Example 4, consider the frame:

ϕ = {w1 7→ r1, w2 7→ 〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉}.

We have that h(〈r1, k〉) is deducible from ϕ using the
recipe R = (proj1(w2)⊕ proj2(w2))⊕ id .

We can now define the semantics of our process calculus
by means of a labelled transition relation on configurations.
A configuration is a pair (P,ϕ) where P is a ground process,
and ϕ is a frame used to record the messages that the
participants have sent previously.
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(Pdiff, ∅)
in(c,r0)−−−−→ (out(c, 〈id ⊕ r2, h(〈r0, k〉)⊕ r2〉).P ′tag, ∅)
out(c)−−−→ (P ′tag, {w1 7→ 〈id ⊕ r2, h(〈r0, k〉)⊕ r2〉})

in(c,r0)−−−−→ (out(c, 〈id ′ ⊕ r′2, h(〈r0, k′〉)⊕ r′2〉).0, {w1 7→ 〈id ⊕ r2, h(〈r0, k〉)⊕ r2〉})
out(c)−−−→ (0, {w1 7→ 〈id ⊕ r2, h(〈r0, k〉)⊕ r2〉, w2 7→ 〈id ′ ⊕ r′2, h(〈r0, k′〉)⊕ r′2〉})

(Psame, ∅)
in(c,r0),out(c),in(c,r0),out(c)−−−−−−−−−−−−−−−−−→ (0, {w1 7→ 〈id ⊕ r2, h(〈r0, k〉)⊕ r2〉, w2 7→ 〈id ⊕ r′2, h(〈r0, k〉)⊕ r′2〉})

Figure 2: Some derivations (see Example 6)

The relation `−→ where ` is either an input, an output, or
an unobservable action test is defined as follows:

RECV (in(c, x).P, ϕ)
in(c,R)−−−−→ (P{x 7→ t↓}, ϕ) if ϕ `R t

SEND (out(c, t).P, ϕ)
out(c)−−−→ (P,ϕ ∪ {w|ϕ|+1 7→ t↓})

TEST ([s = t].P, ϕ)
test−−→ (P,ϕ) if s↓ =AC t↓

The label in(c,R) indicates the input of a message sent
by the attacker over the channel c where R is the recipe that
the attacker uses to construct this message. The label out(c)
indicates a message sent over channel c, and transition rule
SEND records the message sent in the frame. Finally, the rule
TEST checks equality of s and t in the equational theory and
is labelled by the unobservable action test.
Example 6. Consider the ground process Pdiff that models

an execution of the tag id (who shares the key k with
the reader) followed by an execution of the tag id ′ (who
shares the key k′ with the reader), i.e., Pdiff = Ptag.P

′
tag

where:
Ptag = in(c, x).out(c, 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉)
P ′tag = in(c, x′).out(c, 〈id ′ ⊕ r′2, h(〈x′, k′〉)⊕ r′2〉)

We also consider the ground process Psame obtained
from Pdiff by replacing the occurrence of id ′ (resp. k′)
by id (resp. k) (but keeping the nonce r′2). This process
models an execution of two instances of the protocol by
the same tag id (who shares the key k with the reader).
Following our semantics, we have the derivations de-
scribed in Figure 2 where r0 ∈ Npub, i.e. r0 is a public
name known by the attacker.

When ` 6= test we define `
=⇒ to be test−−→

∗ `−→ test−−→
∗

and we
lift `−→ and `

=⇒ to sequences of actions. Given a protocol P ,
we write (P, ϕ)

`1,...,`n−−−−−→ (P ′, ϕ′) if there exists P ∈ P such
that (P,ϕ)

`1,...,`n−−−−−→ (P ′, ϕ′), and similarly for `
=⇒.

2.4. Our notion of equivalence

In this section we will define the notion of equivalence
that we study in this paper (see Definition 5). We first define
what it means for a test to hold on a frame.

Definition 4. Let ϕ be a frame and R1, R2 be two terms
in T (Σ,Npub ∪ dom(ϕ)). The test R1

?
= R2 holds on

frame ϕ, written (R1 = R2)ϕ, if R1ϕ↓ =AC R2ϕ↓.

Example 7. Consider the two following frames:

ϕdiff = {w1 7→ t,w2 7→ t′} ϕsame = {w1 7→ t,w2 7→ t′′}
where the terms t, t′, and t′′ are as follows:
• t = 〈id ⊕ r2, h(〈r0, k〉)⊕ r2〉,
• t′ = 〈id ′ ⊕ r′2, h(〈r0, k′〉)⊕ r′2〉,
• t′′ = 〈id ⊕ r′2, h(〈r0, k〉)⊕ r′2〉.
They correspond to the frames obtained at the end of
the executions considered in Example 6. The test

proj1(w1)⊕ proj2(w1)
?
= proj1(w2)⊕ proj2(w2)

holds in ϕsame but not in ϕdiff. Indeed, an attacker can
observe a difference between these two frames by xoring
the two components of each message and checking
whether this computation yields an equality.

Definition 5. A protocol P is trace included in a protocolQ,
denoted P v Q, if whenever (P, ∅) `1,...,`n

=====⇒ (P,ϕ) and
(R1 = R2)ϕ, then there exist a configuration (Q′, ϕ′)

such that (Q, ∅) `1,...,`n
=====⇒ (Q′, ϕ′) and (R1 = R2)ϕ′.

We say that P and Q are equivalent, written P ≈ Q, if
P v Q and Q v P .

This notion of equivalence does not coincide with the
usual notion of trace equivalence as defined e.g. in [18]. It
is actually coarser and is therefore sound for finding attacks.
However, it has been shown that these two notions coincide
for the class of determinate processes [16].

Definition 6. We say that a protocol P is determinate if
whenever (P, ∅) `1,...,`n

=====⇒ (P,ϕ), and (P, ∅) `1,...,`n
=====⇒

(P ′, ϕ′), then for any test R1
?
= R2, we have that:

(R1 = R2)ϕ if, and only if (R1 = R2)ϕ′.

Checking whether a protocol is determinate is as diffi-
cult as checking equivalence between processes. However,
this condition can also be easily achieved syntactically:
for instance, any protocol whose roles have a deterministic
behaviour can be modeled as a determinate process using a
different channel for each role. In case processes are not
determinate, the above relation can be used to disprove
trace equivalence, i.e., find attacks. It is also possible to
check a more fine-grained notion of trace equivalence which
implies the usual notion of trace equivalence. This fine-
grained notion can be verified straightforwardly by using the

5



algorithm for verifying the above defined (coarse-grained)
trace equivalence in a black-box manner (see [16] for the
details).

Example 8. Going back to our running example, we have
that Psame = {Psame} and Pdiff = {Pdiff} are not
in equivalence according to our definition (as well as
the usual notion of trace equivalence since these two
protocols are determinate). More precisely, we have that
Psame 6v Pdiff. Indeed, we have shown that:

• (Psame, ∅)
in(c,r0),out(c),in(c,r0),out(c)−−−−−−−−−−−−−−−−−→ (0, ϕsame); and

• (proj1(w1)⊕ proj2(w1)=proj1(w2)⊕ proj2(w2))ϕsame.
However, the only extended trace (P ′, ϕ′) such that

(Pdiff, ∅)
in(c,r0),out(c),in(c,r0),out(c)−−−−−−−−−−−−−−−−−→ (P ′, ϕ′)

is (0, ϕdiff) and we have seen that proj1(w1) ⊕
proj2(w1)

?
= proj1(w2)⊕proj2(w2) does not hold in ϕdiff

(see Example 7).
However, we have that Pdiff v Psame. This is a non
trivial inclusion that has been checked using our tool.

The purpose of this paper is to develop a procedure
for checking the usual notion of trace equivalence which
coincides with the notion formally introduced in Definition 5
when protocols are determinate.

3. Modelling using Horn clauses

Our decision procedure is based on a fully abstract
modelling of a process in first-order Horn clauses. We give
the details of this modelling in this section.

3.1. Predicates

We define the set of symbolic runs, denoted u, v, w, . . .,
as the set of finite sequences of symbolic labels:

u, v, w := ε | `, w
with ` ∈ {in(c, t), out(c), test | t ∈ T (Σ,N ∪ X ), c ∈ Ch}

The empty sequence is denoted by ε. Intuitively, a sym-
bolic run stands for a set of possible runs of the protocol.
We denote u vAC v when u is a prefix (modulo AC) of v.

We assume a set Y of recipe variables disjoint from
X , and we use capital letters X,Y, Z to range over Y . We
assume that such variables may only be substituted by terms
in T (Σ,Npub ∪W ∪ Y).

We consider four kinds of predicates over which we
construct the atomic formulas of our logic. Below, w denotes
a symbolic run, R,R′ are terms in T (Σ,Npub ∪ W ∪ Y),
and t is a term in T (Σ,N ∪X ). Informally, these predicates
have the following meaning (see Figure 3 for the formal
semantics).
• rw holds when the run represented by w is executable;
• kw(R, t) holds if whenever the run represented by w

is executable, the message t can be constructed by the
intruder using the recipe R;

• iw(R,R′) holds if whenever the run w is executable,
R and R′ are recipes for the same term; and

• riw(R,R′) is a short form for the conjunction of the
predicates rw and iw(R,R′).

A (ground) atomic formula is interpreted over a pair
consisting of a process P and a frame ϕ, and we write
(P,ϕ) |= f when the atomic formula f holds for (P,ϕ)
or simply P |= f when ϕ is the empty frame. We consider
first-order formulas built over the above atomic formulas and
the usual connectives (conjunction, disjunction, negation,
implication, existential and universal quantification). The
semantics is defined as expected, but the domain of quanti-
fied variables depends on their type: variables in X may be
mapped to any term in T (Σ,N ), while recipe variables in
Y are mapped to recipes, i.e. terms in T (Σ,Npub ∪W).

Example 9. Continuing our running example, let
• w = in(c, r0), out(c), in(c, r0), out(c);
• t0 = id ⊕ h(〈r0, k〉); and
• Ri = proj1(wi)⊕ proj2(wi) with i ∈ {1, 2}.
We have that:
• (Psame, ∅) |= rw;
• (Psame, ∅) |= kw(R1, t0) ∧ kw(R2, t0); and
• (Psame, ∅) |= riw(R1, R2).
Consider t = 〈id⊕r2, h(〈x, k〉)⊕r2〉, and the formulas:
• f1 = ∀X,x. rin(c,x),out(c) ⇐ kε(X,x);
• f2 = ∀X,x. kin(c,x),out(c)(w1, t)⇐ kε(X,x).

We have that Psame |= f1 and Psame |= f2.

3.2. Seed statements

We now identify a subset of the formulas, which we call
statements. Statements will take the form of Horn clauses,
and we shall be mainly concerned with them.

Definition 7. A statement is a Horn clause of the form
H ⇐ ku1(X1, t1), . . . , kun(Xn, tn) where:
• H ∈ {ru0

, ku0
(R, t), iu0

(R,R′), riu0
(R,R′)};

• u0, u1, . . . , un are symbolic runs such that ui vAC u0
for any i ∈ {1, . . . , n};

• t, t1, . . . , tn ∈ T (Σ,N ∪ X );
• R,R′ ∈ T (Σ,Npub ∪W ∪ Y); and
• X1, . . . , Xn are distinct variables from Y .

Lastly, vars(t) ⊆ vars(t1, . . . , tn) when H = ku0
(R, t).

In the definition above, we implicitly assume that all
variables are universally quantified, i.e. all statements are
ground. By abuse of language we sometimes call σ a
grounding substitution for a statement H ⇐ B1, . . . , Bn
when σ is grounding for each of the atomic formulas
H,B1, . . . , Bn. The skeleton of a statement f , denoted
skel(f), is the statement where recipes are removed.

As mentioned above, our decision procedure is based on
a fully abstract modelling of a process in first-order Horn
clauses. In this section, given a ground process P we will
give a set of statements seed(P ) which will serve as a start-
ing point for the modelling. We shall also establish that the
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(P0, ϕ0) |= r`1,...,`n if (P0, ϕ0)
L1−−→ (P1, ϕ1) . . .

Ln−−→ (Pn, ϕn) such that `i↓ =AC Liϕi−1↓ for all 1 ≤ i ≤ n

(P0, ϕ0) |= k`1,...,`n(R, t) if when (P0, ϕ0)
L1−−→ (P1, ϕ1)

L2−−→ . . .
Ln−−→ (Pn, ϕn)

such that `i↓ =AC Liϕi−1↓ for all 1 ≤ i ≤ n, then ϕn `R t
(P0, ϕ0) |= i`1,...,`n(R,R′) if there exists t such that (P0, ϕ0) |= k`1,...,`n(R, t) and (P0, ϕ0) |= k`1,...,`n(R′, t)

(P0, ϕ0) |= ri`1,...,`n(R,R′) if (P0, ϕ0) |= r`1,...,`n and (P0, ϕ0) |= i`1,...,`n(R,R′)

Figure 3: Semantics of atomic formulas

r`1στ↓,...,`mστ↓ ⇐ {k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all 0 ≤ m ≤ n
for all σ ∈ csuR,AC({sk = tk}k∈T (m))
for all τ ∈ variantsR,AC(`1σ, . . . , `mσ)

k`1στ↓,...,`mστ↓(w|S(m)|, tmστ↓)⇐
{k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all m ∈ S(n)
for all σ ∈ csuR,AC({sk = tk}k∈T (m))
for all τ ∈ variantsR,AC(`1σ, . . . , `mσ, tmσ)

kε(c, c)⇐
for all public names c ∈ N 0

pub

k`1,...,`m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓)⇐
{k`1,...,`m(Yj , yjτ↓)}j∈{1,...,k}

for all 0 ≤ m ≤ n
for all function symbols f of arity k
for all τ ∈ variantsR,AC(f(y1, . . . , yk)).

Figure 4: Seed statements

set of statements seed(P ) is a sound and (partially) complete
abstraction of the ground process P . In order to formally
define seed(P ), we start by fixing some conventions.

Let P = a1.a2. . . . .an be a ground process. We assume
w.l.o.g. the following naming conventions:

1) if ai is a receive action then ai = in(ci, xi).
2) xi 6= xj for any i 6= j.
3) if ai is a send action then ai = out(ci, ti).
4) if ai is a test actions then ai = [si = ti].

Moreover, for each 1 ≤ i ≤ n, we define the symbolic
label `i as follows:

`i =





in(ci, xi) if ai = in(ci, xi)
out(ci) if ai = out(ci, ti)
test if ai = [si = ti]

For each 0 ≤ m ≤ n, let the sets R(m), S(m) and T (m)
respectively denote the set of indices of the receive, send
and test actions amongst a1, . . . , am. Moreover, we denote
by |S| the number of elements in such a set. Formally,
• R(m) = { i | 1 ≤ i ≤ m and ai = in(ci, xi) };
• S(m) = { i | 1 ≤ i ≤ m and ai = out(ci, ti) };
• T (m) = { i | 1 ≤ i ≤ m and ai = [si = ti] }.

f+0 : kw(X1 ⊕X2, x1 ⊕ x2)⇐ kw(X1, x1), kw(X2, x2)

f+1 : kw(X1 ⊕X2, x1)⇐ kw(X1, x1 ⊕ x2), kw(X2, x2)

f+2 : kw(X1 ⊕X2, x1 ⊕ x2)⇐
kw(X1, x1 ⊕ x3), kw(X2, x2 ⊕ x3)

f+3 : kw(X1 ⊕X2, 0)⇐ kw(X1, x), kw(X2, x)

f+4 : kw(X1 ⊕X2, x)⇐ kw(X1, x), kw(X2, 0)

where w = `1, . . . , `m is as defined in Section 3.2.

Figure 5: Definition of f+0 and its variants.

Given a set of public names N 0
pub ⊆ Npub, the set

of seed statements associated to P and N 0
pub, denoted

seed(P,N 0
pub), is defined to be the set of statements given

in Figure 4. We may note that while constructing the set
of seed statements, we compute a complete set of unifiers
modulo the whole equational theory E w.r.t. all tests. In
addition, we also apply finite variants. This allows us to get
rid of the rewriting theory in the remainder of our procedure.
The first kind of seed statement models the fact that the
run represented by `1στ↓, . . . , `mστ↓ is executable as soon
as the attacker is able to feed each input with terms that
will allow one to successfully pass all the tests. Following
the same idea, under the same hypotheses, the attacker will
be able to learn the output term. The two last families of
statements model the deduction capabilities of the attacker
who knows all the public names, and is able to apply a
function symbol on top of terms that he already knows.
These abilities can be used at any stage. However, since we
will give the attacker the abilities to transfer his knowledge,
we only have to express the fact that he knows public names
initially.

If N 0
pub = Npub, then seed(P,Npub) is said to be the set

of seed statements associated to P and in this case we write
seed(P ) as a shortcut for seed(P,Npub).

Example 10. Continuing our running example, let

u = in(c, x).out(c), and v = in(c, x′).out(c),

and consider the terms:

• t = 〈id ⊕ r2, h(〈x, k〉)⊕ r2〉;
• t′ = 〈id ⊕ r2, h(〈x′, k〉)⊕ r2〉.
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The following statements belong to seed(Psame):

ru ⇐ kε(X,x)
ku(w1, t)⇐ kε(X,x)

ruv ⇐ kw(X ′, x′), kε(X,x)
kuv(w2, t

′)⇐ kw(X ′, x′), kε(X,x)

When considering the last kind of statements in Figure 4
with f = proj1 and the empty run, we obtain:

kε(proj1(X), proj1(x)) ⇐ kε(X,x)
kε(proj1(X), x1) ⇐ kε(X, 〈x1, x2〉)

Those obtained with f = ⊕ for any possible symbolic
runs are depicted in Figure 5.

3.3. Soundness and completeness

We shortly show that the set of seed statements is
a sound and (partially) complete modelling of a process.
However, we need one more definition to state this fact.

Definition 8. Given a set K of statements, H(K) is the
smallest set of ground facts such that:

CONSEQ

f =
(
H ⇐ B1, . . . , Bn

)
∈ K

σ grounding for f with skel(fσ) in normal form
B1σ ∈ H(K), . . . , Bnσ ∈ H(K)

Hσ ∈ H(K)

EXTEND
ku(R, t) ∈ H(K)

kuv(R, t) ∈ H(K)

We show that as far as reachability predicates and in-
truder knowledge predicates are concerned, the set seed(P )
is a complete abstraction of a process.

Theorem 1. Let P be a ground process.
• P |= f for any f ∈ seed(P ) ∪H(seed(P ));
• If (P, ∅) L1,...,Lm−−−−−−→ (Q,ϕ) for some (Q,ϕ), then

1) rL1ϕ↓,...,Lmϕ↓ ∈ H(seed(P )); and
2) if ϕ `R t then kL1ϕ↓,...,Lmϕ↓(R, t↓) ∈ H(seed(P )).

We will show how the completeness of seed(P ) can be
built upon to achieve full abstraction, i.e., including also
identities of the process P and a procedure for checking
equivalence.

4. Saturation

We shall now describe how to verify equivalence given
the protocol representation as Horn clauses introduced in
the previous section. Given a ground process P and a
protocol Q, we saturate the set of seed statements for P
to construct a set of simple statements which we will call
solved statements. The saturation procedure ensures that the
set of solved statements is a complete abstraction of P .

Then, we use the resulting solved statements to decide
whether P is trace included in Q. Repeating this procedure
for all P ∈ P , and doing similarly for processes in Q, we
are then able to decide whether two determinate protocols P
and Q are in trace equivalence.

In this section we will describe the saturation procedure.
It manipulates a set of statements called a knowledge base.

Definition 9. Given a statement f = (H ⇐ B1, . . . , Bn),
• f is said to be solved if for all 1 ≤ i ≤ n, we have that
Bi = k`1,...,`ji (Xi, xi) for some xi ∈ X , and Xi ∈ Y .

• f is said to be well-formed if whenever it is solved and
H = k`1,...,`k(R, t), we have that t 6∈ X .

A set of well-formed statements is called a knowledge
base. If K is a knowledge base, Ksolved = {f ∈ K |
f is solved }.

Given an initial knowledge base K, the saturation proce-
dure is a non-deterministic process which produces another
knowledge base. Each step of the saturation proceeds as
follows. First a new statement is generated and then the
knowledge base is updated with the new statement. This
two-step process continues until a fixed point is reached. We
denote by sat(K) the set of reachable fixed points starting
from the initial set K.

Before describing in Section 4.2 these two steps, we
explain in the following section why a naive adaptation of
the procedure implemented in the AKISS tool would not be
effective.

4.1. Difficulties

In the original procedure [16], the saturated knowledge
base is obtained by applying (among others) the following
resolution rule based on most general unifiers (mgu):

f = (H ⇐ kuv(X, t), B1, . . . , Bn) ∈ K
g = (kw(R, t′)⇐ Bn+1, . . . , Bm) ∈ Ksolved

σ = mgu(ku(X, t), kw(R, t′)) t 6∈ X
K = K d h

where h =
(

(H ⇐ B1, . . . , Bn, Bn+1, . . . , Bm)σ
)

.

For the sake of simplicity, we consider that the up-
date operator d simply adds h to K. A naive ap-
proach to add the xor operator consists in replacing
the condition σ = mgu(ku(X, t), kw(R, t′)) by σ ∈
csuAC(ku(X, t), kw(R, t′)), i.e, performing unification mod-
ulo AC instead of simply computing the mgu between these
two terms. The obtained procedure would be correct but
would not terminate even on very simple examples.

Example 11. Let P = in(c, z1).in(c, z2).[z2 = a⊕z1].0 and
w = in(c, z1), in(c, a⊕ z1). The set seed(P ) contains
(among others) the following statements:

rw,test ⇐ kε(Z1, z1), kw(Z2, a⊕ z1)
kw(X ⊕ Y, x⊕ y) ⇐ kw(X,x), kw(Y, y)
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The resolution rule can be applied on these two state-
ments, and one of the substitution is

σ = {x 7→ a⊕ z11, y 7→ z12, z1 7→ z11 ⊕ z12}
resulting in the following statement:

rwσ ⇐ kε(Z1, z11 ⊕ z12), kwσ(X, a⊕ z11), kwσ(Y, z12).

This statement can again be resolved using the same
statement as before, yielding an infinite loop.

4.2. Saturation procedure

We now explain our saturation procedure which is in-
spired from the one given in [16]. First, as expected, we
perform resolution modulo associativity and commutativity
(AC) to capture algebraic properties of xor. Second, in order
to achieve termination in practice, we constrained the reso-
lution rules in various ways while preserving completeness
of our procedure.

4.2.1. Generating new statements. Given a knowledge
base K, new statements f are generated by applying the
rules in Figure 6. We assume a selection function sel which
returns ⊥ when applied on a solved statement, and an
atom kw(X, t) with t 6∈ X when applied on an unsolved
statement. Resolution must be performed on this selected
atom.

In order to avoid the termination problem illustrated in
the previous section when considering equational theories
that include xor, we introduce a marking on atomic formulas
in the hypothesis of unsolved statements. The marking is
used to disallow resolution against a statement in f+0 . We
denote unsolved statements with their marking as

H ⇐ B1, . . . Bn ‖M
where M ⊆ {B1, . . . , Bn} is the set of hypotheses of the
statement which are marked. Marking will only be used
for unsolved statements, and we implicitly set an empty
marking on newly generated solved statements. Statements
in f+1 and f+2 will be marked directly when constructing
the initial knowledge base. More precisely, we mark the two
hypotheses of any statement in f+1 ∪f+2 (see Definition 14).
Intuitively, completeness is preserved as derivation trees
in H(K) can always be reorganised by pushing the use
of CONSEQ rules with statement in f+0 below those with
statements in f+1 and f+2 . Other statements will be marked
dynamically in rule RESOLUTION+, i.e., when performing
resolution against a statement in f+0 : to decide which of
the two new hypotheses has to be marked we rely on the
following notions.

Definition 10. Given a term t, we define factor(t) =
{t1, . . . , tn} when

⊕
i ti = t and none of the ti is itself a

sum. The function rigid(t) returns a term ti ∈ factor(t)
such that ti 6∈ X or ⊥ if no such ti exists.

When performing RESOLUTION+ with a selected atom
for which a rigid factor can be found, we mark the hy-
pothesis of the generated statements that contains the factor

returned by rigid. This factor has to be rigid in the sense
that it cannot be a variable. Again, we can show that we
preserve completeness when marking this hypothesis. When
we need to derive a term which is a sum, and we decide to
split this sum in two parts, we will assume that the chosen
rigid factor has to be obtained in an atomic way (it cannot
be the result of a sum anymore). This amounts to favour one
arrangement among all the possible ones up to associativity
and commutativity of the xor operator.

Example 12. Going back to Example 11, we have that
RESOLUTION+ will be applied between these two state-
ments, and rigid(a⊕z1) necessarily returns a. Therefore,
the resulting statement becomes:

rwσ ⇐ kε(Z1, z11⊕z12), kwσ(X, a⊕ z11), kwσ(Y, z12) ‖M

where M = {kwσ(X, a⊕ z11)}.
This forbids the use of RESOLUTION+ on kwσ(X, a ⊕
z11). Provided that our function sel returns kwσ(X, a⊕
z11), the saturation procedure can now only do a RESO-
LUTION rule on the next statement and therefore the non
termination issue mentioned in Example 11 is avoided.

Example 13. The marking of f+1 and f+2 is also important
to ensure termination in practice. Indeed, otherwise, it
would be possible to apply the RESOLUTION+ rule
between f+1 (and f+0 ) on the atom kw(X1, x1 ⊕ x2).
However, the term x1⊕x2 has no rigid factor, and among
the resulting statements, we will find the following one:

kwσ(X1 ⊕X2 ⊕X3, x11 ⊕ x12)⇐
kwσ(X1, x11 ⊕ x21),
kwσ(X2, x12 ⊕ x22),
kwσ(X3, x21 ⊕ x22) ‖ ∅

As no literal is marked, whatever is the selection func-
tion, the RESOLUTION+ rule could be applied and the
saturation procedure would enter an infinite loop.

Finally, the RESOLUTION and RESOLUTION+ rules in-
duce a parent/child relationship between the unsolved state-
ment used in the rule and the generated statement, which
will eventually be added to the knowledge base after can-
onization (see below). This relation allows us to define the
ancestor of any statement to be the parent of its parent
etc. until we reach an unsolved statement in the initial
knowledge base. In the following, we need to distinguish
all deduction statements whose oldest ancestor belongs to
f+1 ∪ f+2 (with marking). We call these statements VIP
statement, and they will deserve a privileged treatment in
the update.

4.2.2. Update. We will now define the update operator d
which adds statements generated by the rules of Figure 6
to the knowledge base. We first need to introduce the set of
consequences of a knowledge base.

Definition 11. Let K be a knowledge base, the set of
consequences, conseq(K), is the smallest set such that
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RESOLUTION

f =
(
H ⇐ kuv(X, t), B1, . . . , Bn ‖M

)
∈ K such that kuv(X, t) = sel(f)

g =
(
kw(R, t′)⇐ Bn+1, . . . , Bm

)
∈ Ksolved r f+0

K = K d {hσ | σ ∈ csuAC(ku(X, t), kw(R, t′))}
where h =

(
H ⇐ B1, . . . , Bn, Bn+1, . . . , Bm ‖Mr {kuv(X, t)}

)

RESOLUTION+
f =

(
H ⇐ ku(X, t), B1, . . . , Bn ‖M

)
∈ K such that ku(X, t) = sel(f) and ku(X, t) 6∈ M

K = K d {hσ | σ ∈ csuAC(〈X, t〉, 〈X1 ⊕X2, x1 ⊕ x2〉)}
where h =

(
H ⇐ B1, . . . , Bn, ku(X1, x1), ku(X2, x2) ‖ M′

)

and M′ =M∪ {ku(Xi, xi) | rigid(t)σ ∈ factor(xiσ) and i ∈ {1, 2}}

EQUATION
f, g ∈ (Ksolved r f+0 ) f =

(
ku(R, t)⇐ B1, . . . , Bn

)
g =

(
ku′v′(R

′, t′)⇐ Bn+1, . . . , Bm

)

K = K d {hσ | σ ∈ csuAC(〈u, t〉, 〈u′, t′〉)} where h = (iu′v′(R,R
′)⇐ B1, . . . , Bm)

TEST
f, g ∈ Ksolved, f =

(
iu(R,R′)⇐ B1, . . . , Bn

)
g =

(
ru′v′ ⇐ Bn+1, . . . , Bm

)

K = K d {hσ | σ ∈ csuAC(u, u′)} where h = (riu′v′(R,R
′)⇐ B1, . . . , Bm)

Figure 6: Saturation rules

AXIOM

kuv(R, t)⇐ ku(R, t), B1, . . . , Bm ∈ conseq(K)

RES

ku(R, t)⇐ B1, . . . , Bn ∈ K σ a substitution
Biσ ⇐ C1, . . . , Cm ∈ conseq(K) 1 ≤ i ≤ n

kuv(R, t)σ ⇐ C1, . . . , Cm ∈ conseq(K)

We shall see that a weak form of update is sufficient
when considering a deduction statement that is already a
consequence of the knowledge base up to a change of recipe.

Definition 12. The canonical form f⇓ of a statement

f =
(
H ⇐ B1, . . . , Bn ‖M

)

is the statement obtained by first normalizing all the
recipes, then applying the rule REMOVE as many times
as possible, and for solved deduction statement, applying
the rule SHIFT as many times as possible.

REMOVE

H ⇐ kuv(X, t), ku(Y, t), B1, . . . , Bn ‖M
with X 6∈ vars(H)

H ⇐ ku(Y, t), B1, . . . , Bn ‖M \ kuv(X, t)
SHIFT

kuv(R, t)⇐ ku(X,x), B1, . . . , Bn with x ∈ factor(t)

kuv(R⊕X, t⊕ x↓)⇐ ku(X,x), B1, . . . , Bn

Definition 13. Let K be a knowledge base, and f a
statement. The update of K by f , denoted K d f , is

K when skel(f) is not in normal form (the statement is
dropped). Otherwise, two options are possible:
• K d f = K ∪ {f⇓};
• K d f = K ∪ {iw(R↓, R′↓) ⇐ B1, . . . Bn} provided

that
– f⇓ =

(
kw(R, t)⇐ B1, . . . Bn

)
, and

– f is a solved statement but not a VIP one, and
–
(
kw(R′, t)⇐ B1, . . . Bn

)
∈ conseq(Ksolved).

Note that the update is not a function because there
may be several R′ for which the second option can be
chosen. Even when such an R′ exists, we may still update
the base by choosing the first option. These choices are
implementation details, and our results hold regardless.

4.2.3. Initial knowledge base. We finally define on which
knowledge base we initiate the saturation procedure.

Definition 14. Let P be a ground process, and N 0
pub be a

set of names. We have that

seed(P,N 0
pub) = f+0 ] f+1 ] f+2 ] f+3 ] f+4 ] S

where fi (with 0 ≤ i ≤ 4) are defined as given in
Figure 5, and S are the remaining statements. Let K0

be the set of statements which contains:
1) deduction statements in f+0 ∩ seed(P,N 0

pub);
2) deduction statements in (f+1 ∪f+2 )∩seed(P,N 0

pub) with
their two hypotheses marked:

kw(X1 ⊕X2, t)⇐ B1, B2 ‖ {B1, B2}.
The initial knowledge base associated to seed(P,N 0

pub),
denoted Kinit(seed(P,N 0

pub)), is defined to be K0 up-
dated by the set S, i.e.,

Kinit(seed(P,N 0
pub)) = (((K0 d g1) d g2) . . . gk)

10



REFL
iw(R,R) ∈ He(K)

EXT
iu(R,R′) ∈ He(K)

iuv(R,R
′) ∈ He(K)

CONG
iw(R1, R

′
1), . . . , iw(Rn, R

′
n) ∈ He(K) f ∈ Σ

iw(f(R1, . . . Rn), f(R′1, . . . R
′
n)) ∈ He(K)

MOD-I
iw(R1, R2) ∈ He(K) Ri↓ =AC R

′
i↓ i ∈ {1, 2}

iw(R′1, R
′
2) ∈ He(K)

MOD-RI
riw(R1, R2) ∈ He(K) Ri↓ =AC R

′
i↓ i ∈ {1, 2}

riw(R′1, R
′
2) ∈ He(K)

EQ. CONSEQ.
kw(R, t) ∈ H(K) iw(R,R′) ∈ He(K)

kw(R′, t) ∈ He(K)

Figure 7: Rules of He(K)

where g1, . . . , gk is an enumeration of the state-
ments in S. We sometimes write Kinit(P ) for
Kinit(seed(P,N 0

pub)).

When building the initial knowledge base we first add
some of the variants related to ⊕. Note in particular that
we mark all hypotheses of the variants in f+1 and f+2
(Figure 5), and we do not add statements in f+3 and f+4 .
All other seed statements are simply added using the update
operator. Please observe that Kinit(P ) depends on the order
in which statements in seed(P ) are updated. The exact
order, however, is not important and our results shall hold
regardless of the chosen order. The saturation procedure
takes Kinit(P ) as an input and produces a knowledge base
Ksat ∈ sat(Kinit(P )). The reason for choosing Kinit(P ) in-
stead of seed(P ) as the starting point of the saturation pro-
cedure is that seed(P ) may not be a knowledge base (recall
that a knowledge base is a set of well-formed statements).
The fact that the set Kinit(P ) is, however, a knowledge base
follows directly from the fact that we apply our SHIFT
rule (through the canonization process) before adding a
deduction statement to the current set.

4.3. Soundness and completeness

We extend the set H(K) to establish that any
Ksat ∈ sat(Kinit(P )) is a complete abstraction of P .

Definition 15. Let K be a set of statements. We define
He(K) to be the smallest set of ground facts containing
H(K) and that is closed under the rules of Figure 7.

We have that the set of solved statements produced by
the saturation procedure is a sound and complete abstraction
of the ground process P .
Theorem 2. Let K ∈ sat(Kinit(P )) for some ground

process P . We have that:
• P |= f for any f ∈ K ∪He(K);

• If (P, ∅) L1,...,Ln−−−−−−→ (Q,ϕ) then

1) rL1ϕ↓,...,Lnϕ↓ ∈ He(Ksolved);
2) if ϕ `R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(Ksolved);
3) if ϕ `R t and ϕ `R′ t, then iL1ϕ↓,...,Lnϕ↓(R,R

′) ∈
He(Ksolved).

The proof follows the same general outline as in the
original argument without xor [16]. However, some points
that were irrelevant or straightforward in the original proof
require special attention here. As explained before, our
marking discipline is justified by means of rearrangements
of CONSEQ rules with f+0 statements in derivation trees of
H(K). Due to these rearrangements, inductions on deriva-
tion trees are not straightforward anymore. We sometimes
have to prove the existence of a derivation tree which is
smaller only for a complex measure, where in the original
proof a standard induction on the size of the derivation tree
or on the size of the recipe of the head was sufficient. The
existence of these other derivation trees themselves relies
on invariants of the saturation procedure that we enforce by
the canonization rules and the distinguished VIP statements.
This is in sharp contrast with the original proof where the
canonization rules only act as an optimization to terminate
faster. We finally note that our saturation procedure also
brings new improvements that are not directly related to
xor (e.g., removal of non normal terms, canonization for
unsolved statements) but which we had to introduce (and
justify) to obtain an effective procedure supporting xor.
Discarding these unnecessary statements could also improve
the efficiency of the original AKISS procedure.

5. Algorithm

In this section, we first describe our algorithm to verify
trace inclusion for determinate processes, and discuss the
effectiveness and termination of the procedure.

5.1. Description and correctness of the algorithm

Our procedure is described in Figure 8. Let P be a
protocol, i.e., a finite set of processes, and P be a ground
process. Let K0 ∈ sat(Kinit(seed(P,NP

pub))) be a saturation
of P where NP

pub is the set containing all public names
occurring in P . In our procedure the process P will be
represented by the set K0

solved of solved statements of K0.
The test REACH-IDENTITY(K0

solved,P) checks whether
each reachable identity ri`1,...,`n(R,R′) ⇐ B1, . . . , Bm in
K0

solved holds in P . To perform this check for a given
reachable identity, we first compute the recipes Ri that
allow the process P to execute the trace `1σ, . . . , `nσ. The
substitution σ replaces variables by fresh names in order
to close the run. Next we check whether the corresponding
trace (M1, . . . ,Mn) is executable in P and whether the test

Rω
?
= R′ω

holds in the resulting frame ϕ, i.e., the frame reached by P
after performing M1, . . . ,Mn. If all the tests succeed, P is
trace included in P .
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REACH-IDENTITY(K0
solved,P)

For all ri`1,...,`n(R,R′)⇐ kw1
(X1, x1), . . . , kwm

(Xm, xm) ∈ K0
solved

let c1, . . . , ck be fresh public names such that σ : vars(`1, . . . , `n) ∪ {x1, . . . , xm} → {c1, . . . , ck} is a bijection
for all i such that `i = in(di, ti), let Ri be such that k`1σ,...,`i−1σ(Ri, tiσ) ∈ H(K0

solved ∪ {kε(ci, ci)⇐ | 1 ≤ i ≤ k})

let Mi =

{
`i if `i ∈ {test, out(c) | c ∈ Ch}
in(di, Ri) if `i = in(di, ti)

check that (P, ∅) M1,...,Mn
======⇒ (P,ϕ) and Rωϕ↓ =AC R

′ωϕ↓ where ω = {Xi 7→ xiσ}.
Figure 8: Test for checking P v P

Theorem 3. Let P be a ground process, and NP
pub ⊆ Npub

be the finite set of public names occurring in P . Let P
be a protocol, and K0 ∈ sat(Kinit(seed(P,NP

pub))). We
have that:
• if P v P then REACH-IDENTITY(K0

solved,P) holds;
• if P is determinate and REACH-IDENTITY(K0

solved,P)
holds then P v P .

Note that the procedure REACH-IDENTITY requires the
computation of a recipe Ri for each input occurring in the
run. Such a Ri necessarily exists (as the run `1, . . . , `n is
reachable) and its computation amounts to finding R such
that kw(R, t) ∈ H(K) given w, t,K. This can be achieved
using a simple recursive backward search, similarly to [16].

5.2. Effectiveness of the procedure

In this section we will discuss some issues on how to
effectively compute a saturated knowledge base and also
discuss termination of the saturation procedure.

The set of solved statements in any K ∈ sat(Kinit(P ))
forms a sound and complete abstraction for the process P .
However, such a set may, a priori, not be computable for
several reasons.

A first issue is that Kinit(P ) is infinite. Indeed, the
set seed(P ) for a ground process P is infinite because
Npub contains an infinite set of names. We follow [16]
to overcome this difficulty thanks to the following lemma.
Intuitively, the lemma states that we do only need to consider
names occurring in P for its saturation; clauses representing
names not occurring in P do not influence the saturation of
the remaining clauses.

Lemma 1. Let P be a ground process, NP
pub ⊆ Npub be the

finite set of public names occurring in P . We have that:

sat(Kinit(P )) =
{K ∪ ext(K) | K ∈ sat(Kinit(seed(P,NP

pub)))}.

where ext(K) is the set containing the following state-
ments:
• kε(n, n)⇐ for any n ∈ Npub;
• iε(n, n)⇐ for any n ∈ Npub;
• riu(n, n) ⇐ B1, . . . , Bn for any ru ⇐ B1, . . . , Bn ∈
K in solved form, any n ∈ Npub.

Another issue is that, when computing the update oper-
ator, we need to check whether there exists R such that the
statement kw(R, t)⇐ B1, . . . Bn is a consequence of a set
of solved statement. This can be achieved using a simple
backward search, similar to the one in [16].

Finally, the saturation procedure may itself not terminate
even if the initial knowledge base is finite and each satura-
tion step is computable. A first reason would be the use of an
unsuitable selection function. In order to avoid termination
issues, we will consider a selection function that selects in
priority a marked literal when it exists, a literal which is not
a sum otherwise, and one that contains a rigid factor as a
last resort. In case there is no other choice than selecting a
literal containing a sum of variables the saturation enters an
infinite loop as illustrated by the following example.

Example 14. Consider the ground process:

P = in(c, x).in(c, y).in(c, z).[x = y ⊕ z].0.

Among others, the set of seed statements will contain:

rw ⇐ kw1
(X, y ⊕ z), kw2

(Y, y), kw3
(Z, z) ‖ ∅

where w = in(c, y ⊕ z).in(c, y).in(c, z).test, and for
some w1, w2, and w3 that we do not specify since there
are not relevant here. The RESOLUTION+ rule will be
applied on the first hypothesis, and since there is no rigid
factor in y ⊕ z, no hypothesis will be marked. We will
therefore generate (amon others) a new statement of the
following form:

r⇐ k(X1, y1 ⊕ z1), k(X2, y2 ⊕ z2),
k(Y, y1 ⊕ y2), k(Z, z1 ⊕ z2) ‖ ∅

on which the same RESOLUTION+ rule can be applied
again entering an infinite loop

Even though this example illustrates that termination is not
guaranteed, we were able to verify a large range of different
protocols, as illustrated in the following section.

6. Implementation and case studies

Given that our procedure may not terminate, our main
goal was to evaluate whether termination is achieved in prac-
tice. We validate our approach by integrating our procedure
in the tool AKISS [3] and by testing it on various examples.
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6.1. Integration in AKISS

Our implementation includes the marking strategy, a
selection function that returns in priority an hypothesis
that is marked and reasoning modulo AC. As unification
and computation of variants for theories that involve an
AC operator are difficult to implement efficiently and are
available through other tools, our implementation calls the
Maude [32] tool for these computations. These external
calls however significantly slow down our tool. While small
examples take a few seconds, the largest examples take
nearly 50 minutes.

To ease the specification of the protocols our tool
supports additional operators in the process calculus for
parallel composition (P ‖ Q), non-deterministic choice
(P ++Q), sequential composition (P ::Q), and a phase
operator (P >>Q). The latter allows at any moment during
the execution of P to proceed to the execution of Q and
will be used to model resistance against guessing attacks
as done e.g. in the ProVerif tool [14]. All these operators
are syntactic sugar and can be translated to sets of (lin-
ear) processes in a straightforward way eventually at the
cost of an exponential blow-up. Recently, dedicated partial
order reduction techniques for the verification of security
protocols have been developed to mitigate this difficulty [7],
[8]. We integrate some of these optimisations which roughly
consist of prioritising outputs. These optimisations can be
safely used when analysing equivalence-based properties for
protocols that are action-determinate [8]. This condition is
trivially satisfied by most of our examples but our encoding
of unlinkability (that relies on ++ ) does not fullfill this
requirement. Therefore, we do not set up the flag #set por
when analysing unlinkability.

Note that for AKISS finding attacks or proving their
absence are mainly equally difficult tasks, as for both it
first completes the saturation of the traces. However, for
some equivalence properties, one of the inclusions is trivially
satisfied. In such a case, we only check the inclusion that is
not trivially satisfied and therefore reduce by two the number
of symbolic traces to explore. Note that our procedure easily
allows to check inclusion instead of equivalence.

We now report on experimental results that have been
obtained by running our tool on a 20 core Intel(R) Xeon(R)
CPU E5-2687W v3 @ 3.10GHz.

6.2. Unlinkability on some RFID protocols

We analyse an unlinkability property on various RFID
protocols that rely on the exclusive-or operator. A descrip-
tion of these protocols can be found in [36], and one of
them, namely the KCL protocol, is detailed in Example 4.

We model unlinkability as an interaction between the
reader and either tag1 or tag2 assuming that the attacker
has previously observed a session between the reader and
tag1. We use the process Ptag (Example 4) to model the tag.
The processes Ptag1

(resp Ptag2
) is a slight variant of tag1

(resp. tag2). More precisely, they are obtained from Ptag
after replacement of id and k by id1 and k1 (resp. id2

and k2). Then, we consider a process Pinit to model the
outputs observed by an attacker during an honest interaction
between tag1 and the reader. We have that:

Pinit = out(c, r). out(c, 〈id1 ⊕ r′, h(〈r, k1〉)⊕ r′〉). 0
The reader is modelled as follows:

Preader = out(c, r1). in(c, y).

([(proj1(y)⊕ id)⊕ proj2(y) = h(〈r1, k1〉)]. 0)

++ ([(proj1(y)⊕ id)⊕ proj2(y) = h(〈r1, k2〉)]. 0)

Using non-deterministic choice we model that the reader
may either engage a session with tag1 (using id1 and
key k1) or tag2 (using id2 and key k2). Unlinkability can
now be expressed as the following process equivalence:

Pinit :: (Ptag1
‖ Preader) ≈ Pinit :: (Ptag2

‖ Preader)

The (known) attack explained in Example 8 on a sim-
plified scenario (without the readers) is again found by
the tool. A possible fix would be to replace the message
h(〈r1, k〉) ⊕ r2 by h(〈r1, k ⊕ r2〉). Our tool is then able to
establish unlinkability.

In total we modelled 5 RFID protocols from [36]: the
KCL, LD, LAK, OTYT and YPL protocols. Note that one
inclusion trivially holds: when considering two different tags
less equalities hold than in the case of two identical tags.
We can therefore avoid unnecessary computations and only
check the other inclusion, i.e.:

Pinit :: (Ptag1
‖ Preader) v Pinit :: (Ptag2

‖ Preader)

On 4 of the 5 protocols we find (known) attacks which
violate unlinkability. The results are summarised in Figure 9
and confirm termination of the saturation procedure with our
resolution strategy when analysing unlinkability on various
RFID protocols.

RFID Protocol # traces time result
KCL (Ex. 4) 1 57 sec 5

KCL 20 29 min 5

KCL fixed 20 97 sec 3

LD 20 29 sec 5

LAK 20 203 sec 3

OTYT 20 14 sec 5

YPL 20 38 sec 5

We note 3 when AKISS concludes that the property holds and 5
when it reports an attack.

Figure 9: Summary for RFID protocols

6.3. Resistance against offline guessing attacks

We analyse resistance against offline guessing attacks on
various password based protocols that rely on the exclusive-
or operator from [29]. We give a detailed description of the
so-called direct authentication protocol [29] below.
Direct authentication protocol. A and B initially share a
poorly chosen secret pw, and wish to establish a session
key k. To achieve this goal, A generates a public key pub and
sends it to B encrypted with pw together with a challenge
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ra. B replies by computing a ciphertext that contains fresh
nonces nb1, nb2, and another one cb called a confounder.
This ciphertext also contains an encryption of the challenge
ra with pw for authentication purposes. Then, A generates
a fresh key k, and a challenge response mechanism is used
to ensure that both parties agree on the key.

A→ B : ra, {pub}pw
B → A : {B,A, nb1, nb2, cb, {ra}pw}pub
A→ B : {nb1, k ⊕ nb2}pw
B → A : {f1(ra), rb}k
A→ B : {f2(rb)}k

This protocol has been designed to be resistant against
guessing attacks. An attacker should not be able to perform
an off-line verification of whether a guess of the password
is successful or not. Actually, several examples of crypto-
graphic protocols are described in [29]. They try to achieve
the same goal relying on slightly different primitives or
considering a different environment (e.g. some of them rely
on a trusted third party S).

We model resistance against guessing attacks by check-
ing an equivalence property between a scenario where the
real password is revealed at the end, and another where a
wrong password (modeled through a fresh name) is revealed.
For each protocol, we consider one session between two
honest agents A and B (and the trusted third party S when
needed). Resistance againt guessing attack is expressed
through the following equivalence:

(PA ‖ PB)>> out(c, pw) ≈ (PA ‖ PB)>> out(c, pw′)

where pw is the real password, and pw′ is the fresh name.

In total, we modelled 4 password-based protocols
from [29], namely the Toy, Nonce, Secret Public Key, and
Direct Authentication (described above) protocols and a
protocol by Gong [28]. For each protocol we first verify
resistance against guessing attacks in the presence of a
passive adversary, i.e. a pure eavesdropper. Whenever this
equivalence holds, we analyse the active case for one ses-
sion. Since one inclusion trivially holds, we only check the
other one, i.e.:

(PA ‖ PB)>> out(c, pw) v (PA ‖ PB)>> out(c, pw′)

Moreover, to avoid exploring unnecessary interlavings, we
performed these experiments using the flag #set por. The
results are summarised in Figure 10 and illustrate that our
tool can also be effectively used to analyse resistance against
guessing attacks on various password-based protocols.

6.4. Some other examples

We have also encoded some authentication properties as
equivalences for both rfid protocols that guarantee unlink-
ability (the LAK and fixed KCL protocols) and on a xor-
based variant of the NSL protocol [19]. For both LAK and
NSL-xor we are able to find (known) attacks. The attack on
NSL-xor is a variant of Lowe’s classical man in the middle

passive case active case
time result # tr. time result

Toy 5 sec 3 5 56 sec 5

Nonce 40 sec 3 90 46 min 3

Sec Pub Key 79 sec 3 90 41 min 3

Direct Auth 11 sec 3 29 5 min 3

Gong 26 sec 5

We note 3 when AKISS concludes that the property holds and 5
when it reports an attack.

Figure 10: Summary for password-based protocols

attack which is prevented on NSL, but possible on NSL-xor.
To find the attack we analyse a scenario where A starts a
session with the attacker and B a session with A.

Finally, on the NSL-xor protocol we verified strong se-
crecy of the nonces na and nb, as defined by Blanchet [12]:
the adversary initially provides two values and must be un-
able to distinguish the situations where the first, respectively,
the second value is used as the secret. For instance strong
secrecy of the nonce na is modelled as follows.

in(c, x1).in(c, x2) :: NSL{x1/na}
≈

in(c, x1).in(c, x2) :: NSL{x2/na}
We show that neither na nor nb are strongly secret, even

when we only consider one honest session among A and B.
The results are summarised in Figure 11.

Protocol # traces time result
LAK auth 1 38 sec 5

KCL fixed auth 1 24 sec 3

NSL xor
-auth 3 86 sec 5

-strong secrecy na 6 20 min 5

-strong secrecy nb 6 86 sec 5

We note 3 when AKISS concludes that the property holds and 5
when it reports an attack.

Figure 11: Summary for other protocols

7. Conclusion

We presented what we believe is the first effective pro-
cedure to verify equivalence properties for protocols that
use xor. The need for such verification techniques is among
others motivated by the unlinkability property in RFID
protocols. Our procedure builds on the theory underlying the
AKISS tool and presents a novel resolution strategy which
we show to be complete. Even though termination is not
guaranteed the tool did terminate on all practical examples
that we have tested.

Directions for future work include the improvement of
the implementation, e.g. avoid calling Maude unnecessarily,
and adding new canonization rules to extend the termination
proof of AKISS [16] to theories including the xor operator.

14



Another direction is to consider other AC operators such as
Diffie-Hellman exponentiation and bilinear pairings, which
are supported by the tamarin tool [34].
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Appendix

As the construction of the seed is similar to the one
in [16], the proof closely follows the original proof, gener-
alising it to reason modulo AC.

1. Soundness

The soundness part of Theorem 1 is a consequence of
Lemma 2 and Lemma 3.
Lemma 2. Let P be a ground process. We have that P |= f

for any statement f ∈ seed(P ).

Proof. We suppose the same naming conventions for
P as in Definition of seed statements (see Section 3.2).
We prove that for each statement f ∈ seed(P ) we have
that P |= f . There are four kinds of seed statements (see
Figure 4) which we consider one-by-one.

Case 1. Let m be such that 0 ≤ m ≤ n, σ and τ be
substitutions such that σ ∈ csuR,AC({sk = tk}k∈T (m)) and
τ ∈ variantsR,AC(`1σ, . . . , `mσ). Let f be the following
statement:

r`1στ↓,...,`mστ↓ ⇐ {k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)}j∈R(m)

We have to show that P |= f . Let ω be an arbitrary
substitution grounding for f . We assume furthermore that
P |= (k`1στ↓,...,`j−1στ↓(Xj , xjστ↓))ω for any j ∈ R(m).
We have to show that P |= (r`1στ↓,...,`mστ↓)ω. In fact we
will show a stronger statement. We show that

P |= (r`1στ↓,...,`pστ↓)ω for all 0 ≤ p ≤ m.

We proceed by induction on p. When p = 0, we have that
(r`1στ↓,...,`pστ↓)ω = r, and P |= (r`1στ↓,...,`pστ↓)ω trivially.
Now, assume that p > 0, and P |= (r`1στ↓,...,`p−1στ↓)ω. We
have to show that P |= (r`1στ↓,...,`pστ↓)ω by case analysis
on ap. Before, we do the case analysis, let us first fix some
notations.

Let (P1, ϕ1) = (P, ∅). As P |= (r`1στ↓,...,`p−1στ↓)ω, we
have that there exist L1, . . . , Lp−1 such that for all 1 ≤ i < p

(Pi, ϕi)
Li−→ (Pi+1, ϕi+1) and Liϕi↓ =AC `iστ↓ω↓

where
• Pi = (ai. . . . .an){xj 7→ xjστ↓ω↓}j∈R(i−1); and
• ϕi extends ϕi−1.

We can now do the case analysis.
1) Case ap = out(cp, tp). We have that `p = out(cp).

Let Lp = out(cp), Pp+1 = (ap+1. . . . .an){xj 7→
xjστ↓ω↓}j∈R(p) and ϕp+1 = ϕp ∪ {w|dom(ϕp)|+1 7→
tpστ↓ω↓}. We have:

(Pp, ϕp)
Lp−−→ (Pp+1, ϕp+1)

which is what we wanted to prove.
2) Case ap = [sp = tp]. We have that `p = test. Let

Pp+1 = (ap+1. . . . .an){xj 7→ xjστ↓ω↓}j∈R(p) and
let ϕp+1 = ϕp. As σ ∈ csuR,AC({sk = tk}k∈T (m)),

we have spσ↓ =AC tpσ↓ and therefore spστ↓ω↓ =AC

tpστ↓ω↓. Hence, we have that

(Tp, ϕp)
test−−→ (Tp+1, ϕp+1)

which is what we wanted to prove.
3) Case ap = in(cp, xp). We have p ∈ R(p) and `p =

in(cp, xp).
Let Pp+1 = (ap+1. . . . .an){xj 7→ xjστ↓ω↓}j∈R(p),
and ϕp+1 = ϕp. As p ∈ R(p), we have that

P |= (k`1στ↓,...,`p−1στ↓(Xp, xpστ↓))ω
(this is an antecendent of f ). Therefore ϕp `Xpω

xpστ↓ω and, by letting Lp = in(cp, Xpω), we obtain
by the definition of −→ that

(Pp, ϕp)
Lp−−→ (Pp+1, ϕp+1)

which is what we wanted to prove.
We have shown that P |= (r`1στ↓,...,`pστ↓)ω.

Case 2. Let m ∈ S(n), σ ∈ csuR,AC({sk = tk}k∈T (m)),
and τ ∈ variantsR,AC(`1σ, . . . , `mσ, tmσ). Let f be the
following statement:

k`1στ↓,...,`mστ↓(w|S(m)|, tmστ↓)
⇐ {k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)}j∈R(m)

We have to show that P |= f . Let ω be an arbitrary substi-
tution grounding for f . We assume furthermore that P |=
(k`1στ↓,...,`j−1στ↓(Xj , xjστ↓))ω for any j ∈ R(m). We
have to show that P |= (k`1στ↓,...,`mστ↓(w|S(m)|, tmστ↓))ω.

Let Pi = (ai. . . . .an){xj 7→ xjστ↓ω↓}j∈R(i−1) and let

ϕi = ∪1≤j≤|S(i−1)|{wj 7→ to(j)στω↓}
where o(j) = min{x | |S(x)| = j}, i.e. o(j) denotes the
index of the jth send action.
We distinguish two cases:

1) if there exist L1, . . . , Lm such that

(P1, ϕ1)
L1−−→ (P2, ϕ2)

L2−−→ . . .
Lm−−→ (Pm+1, ϕm+1)

and Liϕi↓ =AC `iστ↓ω↓ for all 1 ≤ i ≤ m, we have
that

ϕm+1(w|S(m)|) = to(|S(m)|)στω↓ = tmστω↓
and we have that ϕm+1 `w|S(m)| tmστω↓ and therefore
ϕm+1 `w|S(m)| tmστ↓ω which implies that

P |= (k`1στ↓,...,`mστ↓(w|S(m)|, tmστ↓))ω.
2) otherwise, we trivially have that:

P |= k`1στ↓,...,`mστ↓(w|S(m)|, (tmστ)↓)ω.
We have shown that T |= f .

Case 3. Let c be a public name. We have that ∅ `c c, and
therefore P |=

(
kε(c, c)⇐

)
trivially holds.
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Case 4. Let m be such that 0 ≤ m ≤ n. Let f be a function
symbol of arity k and let τ ∈ variantsR,AC(f(y1, . . . , yk)).
Let f be the following statement:

k`1,...,`m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓)⇐
k`1,...,`m(Y1, y1τ↓), . . . , k`1,...,`m(Yk, ykτ↓)

Let ω be an arbitrary substitution grounding for f . We
assume that P |= k`1,...,`m(Yj , yjτ↓)ω for all 1 ≤ j ≤ k.
We distinguish two cases:

1) if there exist L1, . . . , Lm such that

(P1, ϕ1)
L1−−→ (P2, ϕ2)

L2−−→ . . .
Lm−−→ (Pm+1, ϕm+1)

and Liϕi↓ =AC `iστ↓ω↓ for all 1 ≤ i ≤ m,
we have that ϕm+1 `Yjω yjτ↓ω for
all 1 ≤ j ≤ k. This implies that
ϕm+1 `f(Y1ω,...,Ykω) f(y1τ↓ω, . . . , ykτ↓ω), and there-
fore P |= (k`1,...,`m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓))ω.

2) otherwise, we trivially have that:

P |= (k`1,...,`m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓))ω.

Hence, in both cases, we have shown that P |= f .

Hence, for any statement f ∈ seed(P ), we have shown
that P |= f . �
Lemma 3. Let P be a ground process and K be a set of

statements such that for all f ∈ K we have that P |= f .
We have that P |= f for all f ∈ H(K).

Proof. We prove this result by structural induction on the
prooftree witnessing the fact that f ∈ H(K). Let π be such
a proof tree.

Base case. The prooftree π is reduced to a leaf meaning
that it has been obtained by applying the rule CONSEQ on
a statement f ′ = (H ⇐ ) (i.e. with n = 0). We have
that f = f ′σ where σ is a substitution grounding for f ′.
Moreover, by hypothesis, we have that P |= f ′. Hence, as
all variables in f ′ are universally quantified, we have also
that P |= f ′σ, i.e. P |= f .

Inductive case. We proceed by case distinction on the last
rule which has been applied.
• CONSEQ: We have that f ′ = (H ⇐ B1 . . . Bn) ∈ K,
σ is a substitution grounding for f ′ such that f = Hσ,
Biσ ∈ H(K) for 1 ≤ i ≤ n, and skel(f ′σ) is in normal
form. As H ⇐ B1 . . . Bn ∈ K we have by hypothesis
that P |= H ⇐ B1 . . . Bn and hence P |= (H ⇐
B1 . . . Bn)σ. By induction hypothesis we also have that
P |= Biσ for 1 ≤ i ≤ n. Hence, we conclude that
P |= Hσ.

• EXTEND: We have f = kuv(R, t) with ku(R, t) ∈
H(K). By induction hypothesis, we have that P |=
ku(R, t), and it follows from the semantics of k that
P |= kuv(R, t).

This allows us to conclude. �

2. Completeness

The completeness part of Theorem 1 is a consequence
of the following lemma.
Lemma 4. Let P be a ground process such that

(P, ∅) L1,...,Ln−−−−−−→ (Q,ϕ) then
(A) rL1ϕ↓,...,Lnϕ↓ ∈ H(seed(P ));
(B) if ϕ `R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ H(seed(P )).

Proof. We prove the two statements by induction on n.
We assume that the two statements hold for any index less
than n and we prove them for n. By hypothesis, we have
that (P, ∅) L1,...,Ln−−−−−−→ (Q,ϕ), and therefore there exists ω
such that:
• (L1ϕ↓, . . . , Lnϕ↓) =AC (`1, . . . , `n)ω↓; and
• skω↓ =AC tkω↓ for all k ∈ T (n).

First, we prove statement (A). We have skω↓ =AC tkω↓
for all k ∈ T (n). Therefore, there exists σ ∈ csuR,AC({sk ?

=
tk}k∈T (n)) and a substitution π such that:

1) skσ↓ =AC tkσ↓ for all k ∈ T (n); and
2) xω↓ =AC xσπ↓ for any x ∈ vars({sk, tk}k∈T (n)).

It follows that (`1, . . . , `n)ω↓ =AC (`1, . . . , `n)σπ↓.
By definition of variantsR,AC((`1, . . . , `n)σ), we know that
there exists τ ∈ variantsR,AC((`1, . . . , `n)σ) such that

(`1, . . . , `n)σπ↓ =AC (`1, . . . , `n)στ↓τ ′

for some substitution τ ′. Let f be the following statement.

r`1στ↓,...,`nστ↓ ⇐ k`1στ↓,...,`j−1στ↓(Xj , xjστ↓)j∈R(n)

By the definition of seed(P ), we have that f ∈
seed(P ). Let τ ′′ be the substitution that extends τ ′

by {Xj 7→ Rj}j∈R(n) where Rj are recipes for
xjω. Applying our induction hypothesis, we have that
k`1στ↓τ ′′,...,`j−1στ↓τ ′′(Xjτ

′′, xjστ↓τ ′′) is inH(seed(P )) for
j ∈ R(n). Therefore

r`1στ↓τ ′′,...,`nστ↓τ ′′ ∈ H(seed(P )).

We have that:
(L1ϕ↓, . . . , Lnϕ↓) =AC (`1, . . . , `n)ω↓

=AC (`1, . . . , `n)σπ↓
=AC (`1, . . . , `n)στ↓τ ′
=AC `1στ↓τ ′′, . . . , `nστ↓τ ′′

Therefore, we conclude that rL1ϕ↓,...,Lnϕ↓ ∈ H(seed(P )).

We now prove statement (B). By structural induction on the
recipe R, we show that:

kL1ϕ↓,...,Lnϕ↓(R,Rϕ↓) ∈ H(seed(P ))

1) If R = c is a public name, and asf =
(
kε(c, c)⇐

)
is

in the set of seed statements by definition, we have that
kε(R,Rϕ↓) = kε(c, c) ∈ H(seed(T )), and therefore
kL1ϕ↓,...,Lnϕ↓(R,Rϕ↓) ∈ H(seed(T )) by the EXTEND
rule.
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2) If R = wj , let m be the smallest index such that
|S(m)| = j (i.e. m is the index of the action am that
outputs the content of wj) and let tm be the term such
that am = out(c, tm) for some channel c.
Let σ ∈ csuR,AC({sk ?

= tk}k∈T (m)) be such that

(`1, . . . , `n)ω↓ =AC (`1, . . . , `n)σπ↓

for some π. Let τ ∈ variantsR,AC((`1, . . . , `m, tm)σ)
and τ ′ be a substitution such that

(`1, . . . , `m, tm)ω↓ =AC (`1, . . . , `m, tm)στ↓τ ′.

Let h be the following statement:

k`1στ↓,...,`mστ↓(wj , tmστ↓)
⇐ {k`1στ↓,...,`k−1στ↓(Xk, xkστ↓)}k∈R(m)

By definition of seed(P ), we have that h ∈ seed(P ).
For k ∈ R(m), let Rk be recipes of xkστ↓τ ′ =AC

xkω↓ in the smallest possible prefix of ϕ. Let

τ ′′ = τ ′ ∪ {Xk 7→ Rk}k∈R(m).

We have that the antecedents of hτ ′′ are in H(seed(T ))
by the induction hypothesis. Therefore

k`1στ↓τ ′′,...,`mστ↓τ ′′(wj , tmστ↓τ ′′)
=AC k`1στ↓τ ′,...,`mστ↓τ ′(wj , tmστ↓τ ′)
=AC k`1ω↓,...,`mω↓(wj , tmω↓) ∈ H(seed(P )).

But (`1, . . . , `m)ω↓ is a prefix of (`1, . . . , `n)ω↓ and
by the EXTEND rule, k`1ω↓,...,`nω↓(wj , tmω↓) ∈
H(seed(T )), i.e. kL1ϕ↓,...,Lnϕ↓(R,Rϕ↓) ∈
H(seed(T )), which is what we had to prove.

3) If R = f(R1, . . . , Rk), let τ ∈
variantsR,AC(f(y1, . . . , yk)) and τ ′ be such that
Rϕ↓ =AC (f(y1, . . . , yk)τ)↓τ ′ and Riϕ↓ =AC yiτ↓τ ′
for 1 ≤ i ≤ k. Let g be the following statement:

k`1,...,`n(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓)
⇐ {k`1,...,`n(Yj , yjτ↓)}j∈{1,...,k}

By the definition of seed(P ), we have that g ∈
seed(P ).
Let τ ′′ = ω ∪ τ ′ ∪ {Yj 7→ Rj}j∈{1,...,k}. We have
that all antecedents of gτ ′′ are in H(seed(T )) by the
induction hypothesis. Therefore, the head of gτ ′′ is also
in H(seed(T )).

This allows us to conclude the proof. �
Proposition 1. If K is a knowledge base and f is a statement

then K d f is a knowledge base.

Proof. A knowledge base can contain any statement
except solved deduction statements h =

(
k(R, x) ⇐

B1, . . . , Bn

)
. Such kind of statement is not in a canonical

form due to the SHIFT rule, therefore such statement is never
added to the knowledge base.

This section is devoted to the proof of Theorem 2.

3. Soundness

In this section, we prove the soundness part of Theo-
rem 2 (i.e. item 1). The saturation procedure is a restriction
of the original procedure (as described in [16]), therefore
the proof is essentially the same as in [16], and is actually
an immediate consequence of the lemmas stated and proved
below.
Lemma 5. Let P be a ground process and f be a statement.

If P |= f then P |= f⇓.

Proof. Consider a statement f .
1) First, we have to normalize all the recipes that occur

in f . This will have only an effect on H , and the
resulting statement f ′ is such that P |= f ′ since ϕ `R t
implies ϕ `R′ t when R′ = R↓.

2) Second, we apply the REMOVE rule as many times as
possible. Let us show that applying one instance of
such a rule leads to a statement f ′ such that P |= f ′.
In such a case, we have that:
• f = H ⇐ kuv(X, t), ku(Y, t), B1, . . . , Bn ‖M;
• f ′ = H ⇐ ku(Y, t), B1, . . . , Bn ‖ (Mr kuv(X, t)).
Moreover, we know that X 6∈ vars(H). Let τ be an
arbitrary substitution such that T |= ku(Y, t)τ , P |=
B1τ, . . . , P |= Bnτ . We consider the substitution τ ′ to
be identical to τ except that τ ′(X) = τ(Y ). We have
that P |= kuv(X, t)τ as well. Therefore, we have that
P |= Hτ , and this allows us to conclude that P |= f ′.

3) Third, we apply the SHIFT rule as many times as
possible when the statement f is solved. Let us show
that applying one instance of such a rule leads to a
statement f ′ such that P |= f ′. In such a case, we
have that:
• f = kuv(R, t)⇐ ku(X,x), B1, . . . , Bn;
• f ′ = kuv(R⊕X, t⊕ x↓)⇐ ku(X,x), B1, . . . , Bn.
Moreover, we know that x ∈ factor(t). Let τ be an
arbitrary substitution such that

P |= ku(X,x)τ , P |= B1τ , . . ., and P |= Bnτ .
Therefore, we have P |= kuv(R, t)τ , and thus we have
P |= kuv(R⊕X, t⊕x)τ , and P |= kuv(R⊕X, t⊕x↓)τ .
This allows us to conclude that P |= f ′.

We have shown that all the rules needed for comput-
ing the canonical form are sound and therefore T |= f⇓
whenever T |= f . �
Lemma 6. Let P be a ground process and K be a knowledge

base. If P |= f for all f ∈ Ksolved then we have that
P |= f for all f ∈ conseq(Ksolved).

Proof. We show that both inference rules are sound.
Case: AXIOM. Immediate from the semantics of k.
Case: RES. We consider f = ku(R, t) ⇐ B1, . . . , Bn and
gi = Biσ ⇐ C1, . . . , Cm for 1 ≤ i ≤ n be statements such
that P |= f and P |= gi with 1 ≤ i ≤ n. We have to show
that

P |=
(
ku(R, t)σ ⇐ C1, . . . , Cm)

Let τ be a substitution such that P |= C1τ, . . . , Cmτ . We
have that P |= C1τ, . . . , Cmτ and P |= gi with 1 ≤ i ≤ n.
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Therefore, we have that P |= Biστ with 1 ≤ i ≤ n. Since
P |= f , we have that P |= ku(R, t)στ as well. This allows
us to conclude that P |= kuv(R, t)στ . �

Now, we establish the soundness of each saturation rule
as defined in Figure 6.
Lemma 7. Let P be a ground process, f , g, and h be three

statements, and σ be a substitution defined as in the
RESOLUTION rule. If P |= f and P |= g then P |= hσ.

Proof. We consider the following statements:

f = H ⇐ kuv(X, t), B1, . . . , Bn ‖M
g = kw(R, t′)⇐ Bn+1, . . . , Bm

h = H ⇐ B1, . . . , Bm ‖Mr {kuv(X, t)}
Moreover, we have that kuv(X, t) ∈ sel(f), g
is a solved statement but not in f+0 , and σ ∈
csuAC(ku(X, t), kw(R, t′)).

Let τ be a substitution grounding for hσ and assume
that P |= B1στ, . . . , Bmστ . We will show that P |= Hστ .

As P |= Bn+1στ, . . . , Bmστ and because P |= g, we
have that P |= kw(R, t′)στ . But kw(R, t′)στ = ku(X, t)στ ,
and therefore we have that P |= kuv(X, t)στ as well. As all
antecedents of fστ are true in P and because P |= f , we
have that P |= Hστ . As τ was chosen arbitrarily, it follows
that P |= hσ. �
Lemma 8. Let P be a ground process, f , g, and h be

three statements, and σ be a substitution defined as in
the RESOLUTION+ rule. If P |= f and P |= g then
P |= hσ.

Proof. The proof is similar to the former one. �
Lemma 9. Let P be a ground process, f , g and h be three

statements, and σ be a substitution defined as in the
EQUATION rule. If P |= f and P |= g then P |= hσ.

Proof. We consider the following statements:

f = ku(R, t)⇐ B1, . . . , Bn

g = ku′v′(R
′, t′)⇐ Bn+1, . . . , Bm

h = iu′v′(R,R
′)⇐ B1, . . . , Bm

where σ ∈ csuAC(〈u, t〉, 〈u′, t′〉).
Let τ be a substitution grounding for hσ. We assume

that P |= B1στ, . . . , Bmστ . We will show that P |=
iu′v′(R,R

′)στ .
As P |= B1στ, . . . , Bnστ and because P |= f we have

that P |= ku(R, t)στ . But ku(R, t)στ = ku′(R, t)στ by
choice of σ, and therefore P |= ku′(R, t)στ , and we also
have that P |= ku′v′(R, t)στ . As P |= Bn+1στ . . . , Bmστ
and because P |= g we also obtain that P |= ku′v′(R

′, t′)στ .
As P |= ku′v′(R, t)στ and P |= ku′v′(R

′, t′)στ , we
have by definition that P |= iu′v′(R,R

′)στ . We have shown
that the head of hστ is true in P . As τ was chosen
arbitrarily, it follows that hσ holds in P . �
Lemma 10. Let P be a ground process, f, g, and h be

three statements, and σ be a substitution defined as in
the TEST rule. If P |= f and P |= g then P |= hσ.

Proof. We consider the following statements:

f = iu(R,R′)⇐ B1, . . . , Bn

g = ru′v′ ⇐ Bn+1, . . . , Bm

h = riu′v′(R,R
′)⇐ B1, . . . , Bm

where σ ∈ csuAC(u, u′).
Let τ be a substitution grounding for hσ. We assume that

P |= B1στ, . . . , Bmστ and we show that P |= riu(R,R′)τ .
Indeed, as P |= B1στ, . . . , Bnστ and as P |= f , we have
that P |= iu(R,R′)στ . As P |= Bn+1στ, . . . , Bmστ and as
P |= g, we have that P |= ru′v′στ .

But σ ∈ csuAC(u, u′) and therefore uστ =AC u′στ .
Hence, we immediately obtain P |= riu′v′(R,R

′)στ , which
is what we wanted. It follows that P |= hσ. �

Now, we establish the soundness of our update opera-
tion.

Lemma 11. Let P be a ground process, K be a knowledge
base, and g be a statement. If P |= g, and P |= f for
all f ∈ K, then P |= f for any f ∈ (K d g).

Proof. If K d g ⊆ K ∪ {g⇓}, we immediately conclude
by Lemma 5. Otherwise, we have that K d g = K ∪ {h}
where:

• g⇓ = ku(R, t) ⇐ ku1
(X1, x1), . . . , kun

(Xn, xn) for
some R, t, u, u1, . . . , un, X1, . . . , Xn, x1, . . . , xn; and

• h = iu(R,R′↓)⇐ ku1
(X1, x1), . . . , kun

(Xn, xn).

Moreover, we have that g′ ∈ conseq(Ksolved) where

g′ = ku(R′, t)⇐ ku1
(X1, x1), . . . , kun

(Xn, xn).

In order to conclude, we have to show that P |= h. Let τ
be a substitution grounding for h such that the antecedents
of hτ are true in P . As the antecedents of hτ are the same as
the antecedents of g⇓τ and those of g′τ , and as P |= g and
P |= g′ (thanks to Lemma 6), we have that P |= ku(R, t)τ ,
P |= ku(R′, t)τ , and P |= ku(R′↓, t)τ as well. But this
immediately implies that P |= iu(R,R′↓)τ (the head of
hτ ). As τ was chosen arbitrarily, it follows that P |= h. �

Lemma 12. Let P be a ground process and K be a
knowledge base such that P |= f for all f ∈ K. We
have that P |= H for all H ∈ He(K).

Proof. This result is proved by structural induction on
the derivation tree witnessing the fact that H ∈ He(K). �

4. Completeness

In this section we prove the completeness part of Theo-
rem 2. The first two items are immediate consequences of
Theorem 1 and Lemma 27 proved below. The third item
follows from the second item of Theorem 2 and Lemma 25
proved below.
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Preliminaries. We start by introducing a variant ofH, called
H′, where uses of f+0 clauses is constrained. Derivations
establishing H ∈ H′(K) (for some ground fact H) are es-
sentially derivations of H ∈ H(K), decorated with + and −
annotations. In addition to it, we impose that EXTEND rules
are only applied in H′− derivations, and never repeatedly;
this is done through s and e annotations.
Definition 16. Given a solved knowledge base K, we define
H′(K), H′+(K), H′−(K), H′s−(K) and H′e−(K) to be the
smallest sets of ground facts such that:
• H′−(K) = H′s−(K) ∪H′e−(K),
• H′(K) = H′−(K) ∪H′+(K), and

STD

f =
(
H ⇐ B1, . . . , Bn

)
∈ K \ f+0

B1σ, . . . , Bnσ ∈ H′(K) with skel(fσ) in normal form
Hσ ∈ H′s−(K)

SUM

f =
(
H ⇐ B1, B2

)
∈ f+0

B1σ,B2σ ∈ H′(K) with skel(fσ) in normal form
Hσ ∈ H′+(K)

EXTEND’
ku(R, t) ∈ H′s−(K)

kuv(R, t) ∈ H′e−(K)

The sets of derivations associated to H(K), H′(K),
H′−(K), H′s−(K), H′e−(K) and H′+(K) are respectively
denoted by Π(K), Π′(K), Π′−(K), Π′s−(K), Π′e−(K) and
Π′+(K).

We consider a solved knowledge base K, and we intro-
duce the following notation:

1) the extraction extract(π) of a derivation tree π ∈
Π′(K) is the set of derivation trees {π} in case
π ∈ Π′−(K); and extract(π1) ∪ extract(π2) where π1
and π2 are the immediate sub-derivation trees of π in
case π ∈ Π′+(K).

2) the size S(π) of a derivation tree π ∈ Π′(K) is the
number of nodes occurring in π excluding EXTEND’
nodes.

3) the real world W(π) of a derivation tree π ∈ Π′(K)
whose root is labeled with kw(R, t) is w in case
π 6∈ Π′e−(K), and W(π) = W(π′) where π′ is the
immediate sub-derivation tree of π otherwise.

4) the l-restricted size Ŝl(π) of a derivation tree
π ∈ Π′(K) whose immediate sub-derivation tree are
π1, . . . , πn is

∑

1≤i≤n
{S(πi) | W( πi) ≥ l}

Such a measure allows us to define the set H(l,κ)
e (K)

with l, κ ∈ N as the smallest set of facts that:
• contains any H ∈ H′(K) which has a derivation tree
π ∈ Π′(K) such that Ŝl(π) ≤ κ; and

• that is closed under the same rules as He.
Remark 1. The l-restricted size information in the following

proofs are not used to prove the completeness of the
saturation but to prove the correction of the algorithm

in item D. So for a first reading of the proof, it is safe
to skip these information and to read He(K) instead of
H(l,κ)

e (K).

We start the proofs with a technical lemma which will
allow us to exploit the flexibility in how a sum can be
obtained.
Lemma 13. Let K be a solved knowledge base, and π ∈

Π′+(K) with its root labeled with ku(R,
⊕n

i=1 ti) (and
no ti is a sum). Let k ∈ {1, . . . , n}. There exists a
partition of {1, . . . , n} in A, B, and a derivation tree
π′ ∈ Π′+(K) with its root labeled with ku(R′,

⊕n
i=1 ti)

such that:
• k ∈ A;
• R =AC R

′;
• S(π′) = S(π);
• the immediate sub-derivation trees of π′ are:

– π′1 ∈ Π′−(K) with root h′1 = ku(RA,
⊕

i∈A ti); and
– π′2 ∈ Π′(K) with root h′2 = ku(RB ,

⊕
i∈B ti).

Proof. We proceed by induction on S(π). Let π1 and π2
be the immediate sub-derivations of π, respectively labeled
with h1 and h2. We may assume w.l.o.g. that tk occurs in h1.
If π1 ∈ Π′−(K), we conclude immediately. We now consider
that π1 ∈ Π′+(K). We apply our induction hypothesis on π1
to get πa ∈ Π′−(K) and πb ∈ Π′(K) labeled respectively
with ha and hb, and such that S(πa) +S(πb) + 1 = S(π1).
We apply SUM on πb and π2 to obtain π3.

We can conclude with π′1 being πa, π′2 being π3, and
π′ the result of applying SUM on π′1 and π′2. We can check
that S(π′) = S(π′1) + S(π′2) + 1 = S(π). �

Now, after a simple observation on EXTEND (Proposi-
tion 2), we establish that H and H′ coincide (Lemma 14).

Proposition 2. Let K be a solved knowledge base such that
f+0 ⊆ K. If ku(R, t) ∈ H′(K), then kuv(R, t) ∈ H′(K)
for any v.

Proof. We proceed by induction on the derivation π
establishing that ku(R, t) ∈ H′(K). We distinguish three
cases:

1) Case π ∈ Π′s−(K). In such a case, we conclude by
applying rule EXTEND’ to extend the world with v.

2) Case π ∈ Π′e−(K). In such a case, its last rule is already
EXTEND’, extending some world u1 to u1u2 = u; we
conclude by modifying this last rule to directly extend
u1 with u2v.

3) Case π ∈ Π′+(K). In such a case, its two premises are
of the form ku(Ri, ti) with i ∈ {1, 2}. By induction
hypothesis, we have that kuv(Ri, ti) ∈ H′(K) for i ∈
{1, 2}, which allows us to conclude using rule SUM.
�

Lemma 14. Let K be a solved knowledge base such that
f+0 ⊆ K. We have that H(K) = H′(K).

Proof. The fact that H′(K) ⊆ H(K) is immediate. For
the other direction, we have to show that any derivation tree
π ∈ Π(K) can be turned into a derivation tree in Π′(K) with

20



the same conclusion. Let π be a derivation tree in H(K)
with root labeled with H . We proceed by case analysis on
the last rule of π.

1) Case π ends with EXTEND. In such a case, we apply the
induction hypothesis to its immediate sub-derivation,
and conclude by Proposition 2.

2) Case π ends with CONSEQ. In such a case, let f be
the statement and B1, . . . , Bn the premisses involved
in this last step. Applying our induction hypothesis,
we know that there are derivation tree π′1, . . . , π

′
n ∈

Π′(K) labeled respectively with B1, . . . , Bn. We then
distinguish two cases:
• If f /∈ f+0 we can use STD on π′1, . . . , π

′
n to obtain

H ∈ H′−(K).
• If f ∈ f+0 , we proceed similarly but using rule SUM

instead of STD. �
Proposition 3. Let K be a solved knowledge base, and let

f =
(
kuv(R, t) ⇐ C1, . . . , Cm

)
a statement such that

f ∈ conseq(K) and τ be a substitution grounding for f
such that skel(fτ) is in normal form, and for all 1 ≤ i ≤
n we have that Ciτ has a derivation tree πi ∈ H(K).
Then kuv(R, t)τ has a derivation tree π ∈ H(K).

Proof. By induction on the proof tree of f ∈
conseq(K).
• If the AXIOM rule was used, we have that Ci =
ku(R, t) for some i and, by hypothesis, Ciτ ∈ H(K).
Using the EXTENDK rule we conclude.

• If the RES rule was used, we have that there exists a
solved statement g =

(
ku′(R

′, t′) ⇐ B1, . . . , Bn

)
∈

K and a substitution σ such that ku(R, t) =
ku′(R

′, t′)σ and Biσ ⇐ C1, . . . , Cm ∈ conseq(K)
(1 ≤ i ≤ n). We assume w.l.o.g. that σ only instantiate
first-order variables that occur in u′, and t′. Therefore
we have that skel(Biστ) is in normal form as only
subterm of u′σ(= u) and t′σ(= t) may occur in
it, u, t are in normal form. Since skel(Biστ) is in
normal form, we can apply our induction hypothesis,
and conclude that Biστ ∈ H(K).
As
(
ku′(R

′, t′) ⇐ B1, . . . , Bn

)
∈ K and skel(Biστ)

are all in normal form, it follows that ku′(R′, t′)στ =
ku(R, t)τ ∈ H(K) with derivation tree π. Using the
EXTENDK rule we conclude.

We continue showing several useful properties on iden-
tity formulas in He(K).

Lemma 15. Let K be a solved knowledge base.

1) If iw(R1, R2 ⊕ R3) ∈ H(l,κ)
e (K) then iw(R1 ⊕

R2, R3) ∈ H(l,κ)
e (K).

2) If iw(R1, R2) ∈ H(l,κ)
e (K) and iw(R2, R3) ∈

H(l,κ)
e (K) then iw(R1, R3) ∈ H(l,κ)

e (K).
3) If iw(R1, R2) ∈ H(l,κ)

e (K) then iw(R2, R1) ∈
H(l,κ)

e (K).

Proof. We prove the two items separately.

1) We apply CONG using iw(R2, R2) ∈ H(l,κ)
e (K) (ob-

tained with REFL) to get iw(R1⊕R2, R2⊕R3⊕R2) ∈
H(l,κ)

e (K), and conclude using MOD-I.
2) Using CONG, we get iw(R1 ⊕ R2, R2 ⊕ R3) ∈
H(l,κ)

e (K). We apply CONG again using iw(R2, R2) ∈
H(l,κ)

e (K) (obtained with REFL), and conclude using
MOD-I. �

3) We apply twice CONG using iw(R1, R1) ∈ H(l,κ)
e (K)

and iw(R2, R2) ∈ H(l,κ)
e (K) (obtained with REFL) to

get iw(R1⊕R1⊕R2, R2⊕R1⊕R2) ∈ H(l,κ)
e (K), and

conclude using MOD-I.
Proposition 4. Let K be a knowledge base. If

kw(R[T ]p, t) ∈ He(K) and iw(T, T ′) ∈ He(K), then
kw(R[T ′]p, t) ∈ He(K).

Proof. By induction on the context R.
Base case. As kw(R, t) ∈ He(K), it follows that there

exist R′′ such that

kw(R′′, t) ∈ H(K) (1)

and such that iw(R,R′′) ∈ He(K). But iw(R,R′) ∈ He(K)
and therefore, by Lemma 15, we have that

iw(R′′, R′) ∈ He(K). (2)

Using Equations 1 and 2 we immediately obtain by the
definition of He that kw(R′, t) ∈ He(K).

Induction case. By application of the CONG rule on the
top symbol.
Definition 17. We write w v w′ whenever w is a prefix

of w′: i.e. there exists `1, . . . , `n such that w′ =AC

`1, . . . , `n and w =AC `1, . . . , `m for some 0 ≤ m ≤ n.

Dealing with saturation. The following Lemma is a tech-
nical one which will be used in the proof of Lemma 17 and
of Lemma 21.
Lemma 16. Let K be a saturated knowledge base, and f

be an unsolved statement in K such that:

f =
(
H ⇐ B1, . . . , Bn ‖M

)

and Bi = kwi
(Xi, ti). Let σ be a substitution such that

• σ is grounding for f ,
• skel(fσ) is in normal form, and
• for all 1 ≤ i ≤ n there exist πi ∈ Π′(Ksolved) to derive
Biσ and if Bi ∈M then πi ∈ Π′−(Ksolved).

Then we have that, during the saturation of K, there was an
update with a statement h =

(
H ′ ⇐ B′1, . . . , B

′
n′ ‖M′

)

where B′i = kw′i(X
′
i, t
′
i), and there is a substitution ω

grounding for h such that:
1) skel(hω) is in normal form;
2) H ′ω = Hσ;
3) for all 1 ≤ i ≤ n′, there exist π′i ∈ Π′(Ksolved) to derive

B′iω, and if B′i ∈Marked′ then π′i ∈ Π′−(Ksolved);
4)
∑

i∈{1,...,n} S(πi) >
∑

i∈{1,...,n′} S(π′i);
5) Let π ∈ Π′(Ksolved) be the derivation tree of Hσ ∈
H(K) with sub-derivation trees π1, . . . , πn and π′ ∈
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Π′(Ksolved) be the derivation tree of H ′ω ∈ H(K)
whose sub-derivation trees are π′1, . . . , π

′
n′ . For all l

we have that Ŝl(π′) ≤ Ŝl(π).

Proof. Let Bj = kwj
(Xj , tj) = sel(f).

Case: πj ∈ Π′−(Ksolved). We consider the last node of πj or
the previous node if the last node is EXTEND’ with some
word v′. Let

g =
(
ku′(R

′, t′)⇐ Bn+1, . . . , Bm

)
∈ Ksolved,

g 6= f+0 and σ′ the statement and substitution of this
node (we have u′v′σ′ = wjσ). Note that by def-
inition of a derivation tree and S(.), we have that
S(πj) = 1 +

∑
i∈{n+1,...,m} π

′
i where (π′i)n+1≤i≤m

are the immediate sub-derivation tree of πj and also
proofs of (Biσ) ∈ Π′(Ksolved). As σ ∪ σ′ is a uni-
fier of kwj (Xj , tj) and ku′(R

′, t′), it follows that τ ∈
csuAC(kwj (Xj , tj), ku′(R

′, t′)) exists. Therefore σ∪σ′ must
be an instance of the one element of the complete set of
unifier, let ω be a substitution such that σ ∪ σ′ = τω.

As K has been saturated by selecting Bj and g 6= f+0 , it
follows that the RESOLUTION saturation rule was applied to
f and g. We consider h the resulting statement from which
K has been updated:

h =
(
H ⇐ B1, . . . , Bj−1, Bj+1, . . . , Bm ‖M

)
τ.

We have that ω is a substitution grounding for h, that
skel(hω) is in normal form, that π′i ∈ Π′(Ksolved) is a
derivation tree for Biτω ∈ H′(Ksolved) for i ∈ {1, . . . , j −
1, j + 1, . . . ,m}, and that

∑

i∈{1,...,j−1,j+1,...,m}
S(π′i) <

∑

i∈1...n
S(πi).

Therefore, Condition 4 is satisfied. Similarly, Condition 5 is
also satisfied: when W(πi) ≥ l we have a strict inequality
otherwise we have an equality as for i ∈ {n + 1, . . . ,m},
W(πi) < l.

Finally, the atoms Bi for i ∈ {n + 1, . . . ,m} are not
marked (g is a solved statement), while, by hypothesis, the
others (Bi for i ∈ {1, . . . , j − 1, j + 1, . . . , n} ) are marked
only if they have a derivation tree in Π′−(Ksolved). Therefore,
Condition 3 is also satisfied.
Case πj ∈ Π′+(Ksolved). The case where rigid(tj) = ⊥
is similar to the previous one (since there is no mark-
ing). Otherwise, we apply Lemma 13 on πj and the fac-
tor rigid(tj) (the one chosen during the saturation) to
get kw(Rx, tx) of derivation tree πx ∈ Π′−(Ksolved) and
kw(Ry, ty) of derivation tree πy ∈ Π′(Ksolved) such that
kw(Rx⊕Ry, tx⊕ ty) =AC kw(Rj , tj)σ and rigid(tj) is part
of txσ. We also have S(πj) = 1 + πx + πy.

Let σ+ ∈ csuAC(kw(Rj , tj), kw(X ⊕ Y, x ⊕ y)) such
that tx is an instance of xσ+, ty an instance of yσ+, Rx an
instance of Xσ+ and Ry an instance of Y σ+. We denote
by ω the substitution such that σ+ω = σ

As K has been saturated by selecting Bj , it follows that
the RESOLUTION+ saturation rule was applied to f and f+0
with σ+ as unifier.

We consider h′ the resulting statement from which K
has been updated:

h′ =
(
H ⇐ Bx, By, B1, . . . , Bj−1, Bj+1, . . . , Bn ‖M∪{Bx}

)
σ+

where Bx is marked, By is not, and the other keep their
status.

We have that ω is a substitution grounding for h such
that skel(hω) is in normal form, that Biσ+ω has a derivation
tree π′i ∈ Π′(Ksolved) for i ∈ {1, . . . , j − 1, j + 1, . . . ,m}
and that S(π′x) + S(π′y) +

∑
i∈{1,...,j−1,j+1,...,m} S(π′i) <∑

i∈1...n S(πi). Therefore, our Condition 4 is satisfied.
Finally, the atoms Bi for i ∈ {1, . . . , j − 1, j +

1, . . . , n} are marked only if they have a derivation tree
in Π′−(Ksolved). Therefore our Condition 3 is also satisfied.
Similarly, Condition 5 is also satisfied: whenW(πi) ≥ l we
have a strict inequality otherwise we have an equality as for
i ∈ {n+ 1, . . . ,m}, W(πi) < l.
Remark 2. Note that the derivation trees of the premisses

of h are the ones of the premisses of f except that
the derivation tree of Bj has been replaced by all its
immediate sub-derivation trees.

Lemma 17. Let K be a saturated knowledge base and f ∈
K be a statement such that

f =
(
H ⇐ B1, . . . , Bn ‖M

)

where H is either iw(R,R′), riw(R,R′) or rw. Let σ be
a substitution grounding for f such that
• skel(fσ) is in normal form,
• for all 1 ≤ i ≤ n there exists a derivation tree πi ∈

Π′(Ksolved) of Biσ and if Bi ∈ marked then πi ∈
Π′−(Ksolved).

For all l we have that

Hσ ∈ H(l,κ)
e (Ksolved)

where κ = Ŝl(π) where π is the derivation tree whose
immediate sub-derivation trees are the πi’s

Proof. Let G =
∑

i∈{1,...,n} S(πi). We prove the lemma
by induction on G.

If f is a solved statement, the conclusion is immediate
by the definition of H(l,κ)

e .
Otherwise, we apply Lemma 16 on f and σ. We get the

existence of ω and h = (H ′ ⇐ B′1, . . . , B
′
m ‖M′) such that

K has been updated by h and which have the six properties
stated in Lemma 16. Let h⇓ = (H ′′ ⇐ B′′1 , . . . , B

′′
m′ ‖M′′)

such that {B′′1 , . . . , B′′m′} ⊆ {B′1, . . . , B′m}. Since Prop-
erty 1 grants that skel(H ′′) is in normal form and that
canonization rules can only replace the term of the head by a
subterm, the skeleton of the considered predicates h⇓ is still
in normal form and then is not removed: it is added in the
knowledge base by the update. Then due to Property 3,M′′
corresponds to the premisses which has a derivation tree in
Π′−(Ksolved) and due to the Property 4 the measure is strictly
smaller so we can apply our induction hypothesis on h⇓ to
get H ′′ω ∈ H(l,κ′)

e with κ′ ≤ κ due to the property 5 and the
set inclusion. Finally, according to the Property 2 we have
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H ′ω = Hσ and by definition of ⇓, we have H ′↓ω = H ′′ω,
therefore, by definition of H(l,κ)

e , we have Hσ ∈ H(l,κ)
e .

Definition 18. We say that a term t has a root variable if
there exists a term t′ and a variable x such that t = t′⊕x
or t = x.

Lemma 18. Let K be a saturated knowledge base. If h =
kw(R, t) ⇐ B1, . . . , Bn ∈ Ksolved has been obtained
by applying RESOLUTION or RESOLUTION+ between
a VIP statement f and g ∈ Ksolved then t has no root
variable.

Proof. Recall that a VIP statement always stems from
a resolution against a solved statement of an unsolved VIP
statement, except for the initial f+1 and f+2 VIP statements.

Let f = kw(X+Y, x)⇐ kw(X,x⊕u), kw(Y, u) ‖M ∈
f+1 . The resolution can only be done on kw(X,x⊕u) against
some g = kv(R

′, t1 ⊕ t2) ⇐ B′1, . . . , B
′
n where neither

t1 or t2 has a root variable (the SHIFT rule prevents such
solved statement to be added in the database). Hence, x is
substituted by a term which does not have a root variable.
Then no further substitution can lead to a term with a root
variable: the property holds for any solved VIP statement
whose ancestor is in f+1 .

Let f be a solved VIP statement whose ancestor is
kw(X+Y, x+y)⇐ kw(X,x⊕u), kw(Y, y⊕u) ‖M ∈ f+2 .
By symmetry, assume that resolution has been performed
on kw(X,x ⊕ u) ∈ f+2 with some substitution σ1 and
another solved statement. The direct child of the ancestor
is f1 = kw(Xσ + Y, xσ + y) ⇐ B′1, . . . , B

′
m, kwσ1(Y, y ⊕

uσ1) ‖M′. The previous argument of the f+1 case leads
to xσ has no root variable. Let f2, . . . , fn be the VIP
children obtained by resolution on fi−1 and a solved state-
ment with substitution σ2, . . . , σn but where sel(fi−1) 6=
kwσ1...σi(Y, y ⊕ u(σ1 . . . σi)). However all these fi are un-
solved since y ⊕ u(σ1 . . . σi) is not a variable. Once a
resolution is done against the literal kw(Y, y ⊕ u(σ1 . . . σn)
with substitution σ′ the previous argument leads to yσ′

having no root variable. Since neither x nor y have a root
variable, t has no root variable. Therefore, the property also
holds for any solved VIP statement whose ancestor is in f+2 .
Lemma 19. Let fn be a solved VIP statement

whose ancestor is f0 = (kw(X ⊕ Y, t) ⇐
B0,1, B0,2 ‖ {B0,1, B0,2}) ∈ f+1 ∪ f+2 and fi are the
intermediate statements. By symmetry, we consider that
sel(f0) = B0,1 and therefore that there exists B1,2 =
B0,2σ in the premisses of f1. If Bi,2 exists in the pre-
misses of fi and sel(fi) 6= Bi,2 the resulting statement
has a premisse Bi+1,2. The statement fn has no premisse
Bn,2.

Proof. We consider two possible cases for the ancestor.
• If f0 = kw(X + Y, x+ y)⇐ kw(X,x⊕ u), kw(Y, y ⊕
u) ‖M ∈ f+2 we observe that none of the two pre-
misses are solved. As fn is solved both premisses
must have been removed by resolution and the result
is immediate.

• If f0 = kw(X+Y, x)⇐ kw(X,x⊕u), kw(Y, u) ‖M ∈
f+1 , resolution can only be performed on kw(X,x⊕u)

against some g = kv(R
′, t1⊕ t2)⇐ B′1, . . . , B

′
n where

neither t1 nor t2 has a root variable. This implies that u
will be substituted by a non variable term t′. Therefore
at least one resolution on kw(Y, t′) is required to get a
solved statement.

Lemma 20. Let K be a saturated knowledge base and h a
solved statement

h =
(
ku(R, t)⇐ B1, . . . , Bn

)

such that h⇓ =
(
ku(R′, t′) ⇐ B′1, . . . , B

′
m

)
, t is in

normal form and
• either h⇓ ∈ Ksolved,
• or g =

(
ku(R′′, t′) ⇐ B′1, . . . , B

′
m

)
∈

conseq(Ksolved) and h′ =
(
iu(R′↓, R′′↓) ⇐

B′1, . . . , B
′
m

)
∈ Ksolved for some R′′.

Let σ be a substitution grounding for h such that skel(hσ)
is in normal form, and for all 1 ≤ i ≤ n, we have that
Biσ has a derivation tree πi ∈ Π′(Ksolved). We have that

(ku(R, t))σ ∈ He(Ksolved).

Proof. First note that by definition of the canonical form
{B′1, . . . , B′m} ⊆ {B1, . . . , Bn} and σ is grounding for h⇓
too. We proceed by induction on the number of rules which
have been applied to get h⇓ from h.

1) Base case: h⇓ = h.
a) If h⇓ is in K, we immediately conclude.
b) Otherwise, by applying Proposition 3 to g and σ, we

have that

ku(R′′, t′)σ ∈ H(Ksolved).

Furthermore, as h′ ∈ Ksolved and as all antecedents
B′1σ, . . . , B

′
mσ of h′σ are in H(Ksolved), we have

that
iu(R′↓, R′′↓)σ ∈ H(Ksolved).

It immediately follows that

ku(R′, t′)σ ∈ He(Ksolved),

which is what we had the prove since ku(R′, t′)σ =
ku(R, t)σ.

2) If the rule REMOVE has been applied, the conclusion
is immediate as REMOVE only remove premises.

3) If there is a renormalization of the recipe, we conclude
with MOD-I and EQ. CONSEQ.

4) If the rule SHIFT has be applied to h = ku(R, t) ⇐
kw(X,x), B1, . . . , Bn for some w such that w v u to
get h′ = ku(R ⊕X, t⊕ x↓)⇐ kw(X,x), B1, . . . , Bn.
By induction hypothesis, we have ku(R⊕X, t⊕x↓)σ ∈
He(Ksolved). By definition of He, there is R′′′ such
that kuσ(R′′′, t⊕ x↓σ) ∈ H(Ksolved) and iuσ(R′′′, R⊕
Xσ) ∈ He(Ksolved). We distinguish two cases.
• If t 6= x, since we also have ku(X,x)σ ∈
H(Ksolved), we get by the rule CONSEQ on f+0
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that kuσ(R′′′ ⊕ Xσ, ((t ⊕ x↓) ⊕ x)σ) ∈ H(Ksolved)
(and (t ⊕ x↓) ⊕ x =AC t). From iuσ(R′′′, R ⊕
Xσ) ∈ He(Ksolved), iu(X,X)σ ∈ He(Ksolved) and
the CONG with ⊕, we get iuσ(R′′′ ⊕ Xσ, (R ⊕
X ⊕ X)σ) ∈ He(Ksolved). From MOD-I, we get
iuσ(R′′′ ⊕ Xσ,Rσ) ∈ He(Ksolved). Finally from
kuσ(R′′′ ⊕ Xσ, ((t ⊕ x↓) ⊕ x)σ) ∈ H(Ksolved),
applying EQ. CONSEQ., we obtain that ku(R, t)σ ∈
He(Ksolved).

• If t = x, from kuσ(R′′′, 0) ∈ H(Ksolved) and since
the base is saturated and contains kw(0, 0), rule
EQUATION has been applied between kw(0, 0) ⇐
and f the statement of the root node of the deriva-
tion tree of kuσ(R′′′, 0) ∈ H(Ksolved). This leads
to iuσ(R′′′, 0) ∈ H(Ksolved). By Lemma 15, from
iuσ(R′′′, 0) ∈ He(Ksolved) and iuσ(R′′′, R ⊕Xσ) ∈
He(Ksolved), we get iu(R,X)σ ∈ He(Ksolved). Since
ku(X,x)σ ∈ H(Ksolved), we conclude.

Lemma 21. Let K be a saturated knowledge base and f ∈
K be a statement such that

f =
(
kw(R, t)⇐ B1, . . . , Bn ‖M

)

and Bi = kwi
(Xi, ti). Let σ be a substitution grounding

for f such that skel(fσ) is in normal form, and for all
1 ≤ i ≤ n, we have that Biσ has a derivation tree πi in
Π′(Ksolved), and if Bi ∈M then πi ∈ Π′−(Ksolved). We
have that

(kw(R, t))σ ∈ He(Ksolved).

Moreover, if f ∈ f+1 ∪f+2 , we have for all l that Ŝl(π) ≤
Ŝl(π1) + Ŝl(π2).

Proof. Let G =
∑

i∈{1,...,n} S(πi). We prove the lemma
by induction on G with a stronger assumption to prove
the measure on f+1 and f+2 . If f is a VIP statement, from
(kw(R, t))σ ∈ He(Ksolved), we extract the derivation tree
π of (kw(R′, t))σ ∈ H′(Ksolved) with R′↓ = R↓ whose
root is hf = Hf ⇐ Bf1 , . . . , B

f
m, σ

f and πfi ∈ Π′(Ksolved)
derivation trees of Bfi σ

f , then for all n we have that

Ŝl(π) ≤ ∑
{i|W(πi)≥l∧∃j, πi=π

f
j }
S(πi)+∑

{i|W(πi)≥l∧¬∃j, πi=π
f
j }
Ŝl(πi).

Finally, we prove the assertion for f+1 and f+2 by using
Lemma 19.

Base case. If f is a solved statement, the conclusion
is immediate by the definitions of H and He: when f is
solved, we have πi = πfi , so the inequality of the measure
is just Ŝl(π) ≤ ∑{i|W(πi)≥l} S(πi) which is the definition
of Ŝl(π).

Induction case. If f is not solved, we apply Lemma 16
to get h, ω and π′i derivation trees of B′iω where

h =
(
ku(Rh, th)⇐ B′1, . . . , B

′
m ‖M′

)

such that K has been updated by h and which
have the five properties stated in Lemma 16. Let
h⇓ = (ku(R′h, t

′
h) ⇐ B′′1 , . . . , B

′′
m′ ‖M′′) such that

{B′′1 , . . . , B′′m′} ⊆ {B′1, . . . , B′m}. Since Property 1 grants
that skel(hω) is in normal form and that the SHIFT rule
cannot produce non normal skeletons while the other rule
does not alter skel(ku(R′h, t

′
h)), h⇓ is not removed.

1) Case where h is not solved. Due to Property 3,M′′ cor-
responds to the premisses which has a derivation tree in
Π′−(Ksolved) and due to the Property 4 the measure is
strictly smaller so we can apply our induction hypoth-
esis on h⇓ to get ku(R′h, t

′
h)ω ∈ He(Ksolved). Finally,

according to the Property 2, we have ku(Rh, th)ω =
kw(R, t)σ and by definition of ⇓ when the statement
is not solved, we have ku(R′h↓, t′h)ω = ku(Rh, th)ω,
therefore, by definition of He, we have ku(R, t)ω ∈
He(Ksolved). Finally, we consider that f is a VIP
statement. In that case, th cannot be of the form t⊕ x
according to Lemma 18, so the rule SHIFT is not
applied. From our induction hypothesis, we have

Ŝl(π) ≤
∑

{i|∃j, π′i=π
f
j }

S(π′i) +
∑

{i|¬∃j, π′i=π
f
j }

S(π′i).

From Remark 2, since ∀x,S(x) > Ŝl(x), we have

Ŝl(π) ≤ ∑
{i|W(πi)≥l∧∃j, πi=π

f
j }
S(πi)+∑

{i|W(πi)≥l∧¬∃j, πi=π
f
j }
Ŝl(πi).

2) Case where h is solved. If f is a VIP statement,
due to Lemma 18 no SHIFT rule has been used and
by definition h is a VIP statement, so h⇓ has been
added to K. We can then conclude since h⇓ is just
the renormalization of the head and the removal of
some premisses (with Remark 2 of Lemma 16, we have
Ŝl(π) ≤ ∑i S(πi)). If f is not a VIP statement, we
conclude by Lemma 20.

The following lemma will be used in item D but is not
used to prove the completeness.
Lemma 22. Let K be a saturated knowledge base. If

ru ∈ H(Ksolved), iu(R,R′) ∈ H(Ksolved) then there
exist a derivation tree π ∈ Π′(Ksolved) of iu(R,R′) and
riu(R,R′) ∈ H(|u|,κ)

e (Ksolved) with κ = Ŝ|u|(π).

Proof. As ru ∈ H(Ksolved), there exists a solved state-
ment f =

(
rv ⇐ B1, . . . , Bn

)
∈ Ksolved and a substitution

σ grounding for f such that skel(fσ) in normal form and
Biσ ∈ H(Ksolved) with derivation tree πi for all 1 ≤ i ≤ n
and such that u = vσ.

As iu(R,R′) ∈ H(Ksolved), there exists, by Lemma 14,
π ∈ Π′(Ksolved) of iu(R,R′). π is such that there exists at
its root or below the EXTEND’ root node a solved statement

g =
(
iw(T, T ′)⇐ Bn+1, . . . , Bm

)

and a substitution τ grounding for g such that skel(gτ) is in
normal form, and Biτ ∈ H(Ksolved) with derivation tree πi
for all n+ 1 ≤ i ≤ m and such that u w u′ w wτ , R = Tτ
and R′ = T ′τ .

As vσ = u w wτ , it follows that v = v0v1 such that
v0 and w are unifiable (σ ∪ τ is such a unifier). Let ω ∈
csuAC(v0, w) and let θ be such that σ ∪ τ = ω ◦ θ.
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As the knowledge base is saturated, the TEST saturation
rule must have fired for f and g and therefore K must have
been updated by h where

h =
(

(riv(T, T
′)⇐ B1, . . . , Bm)ω

)
.

We have that skel(hθ) is in normal form, and therefore
skel(h) is in normal form too. As h is not a deduction fact,
and T , T ′ are in normal form, the update must have simply
added h to K and therefore h ∈ K.

We have that Biωθ = Biσ ∈ H(Ksolved) for all 1 ≤ i ≤
n and that Biωθ = Biτ ∈ H(Ksolved) for all n + 1 ≤ i ≤
m with derivation tree πi. By applying Lemma 17 to the
statement h and the substitution θ (note that its head is in
normal form and |wi| < |u| for i ∈ {1, . . . , n}), we obtain
that riv(T, T ′)ωθ↓ = riu(R,R′)↓ and therefore riu(R,R′) ∈
H(|u|,κ)

e (Ksolved) with κ ≤∑i∈{n+1,...,m} S(πi) = Ŝ|u|(π).
Lemma 23. Let K be a saturated knowledge base. If there

is a derivation tree π in Π′−(Ksolved) of ku(R, t) and a
derivation tree π′ in Π′−(Ksolved) of kuv(R

′, t) then for
all l we have that iw(R,R′) ∈ H(l,κ)

e (Ksolved) for some
w v uv with κ ≤ Ŝl(π) + Ŝl(π′).

Proof. Let u = `1, . . . , `k and v = `k+1, . . . , `l. As
ku(R, t) ∈ H(Ksolved), it follows from its derivation tree
that there exist

f =
(
kw(S, s)⇐ B1, . . . , Bn

)
∈ Ksolved

and a substitution σ grounding for f such that skel(fσ) is in
normal form, Biσ ∈ H(Ksolved) (1 ≤ i ≤ n) of derivation
tree πi and kw(S, s)σ = ku′(R, t) for some u′ v u a prefix
of u.

Similarly, as kuv(R
′, t) ∈ H(Ksolved), it follows that

there exist

f ′ =
(
kw′(S

′, s′)⇐ B′1, . . . , B
′
m

)
∈ Ksolved

and a substitution σ′ grounding for f ′ such that skel(f ′σ′)
is in normal form, B′iσ ∈ H(Ksolved) (1 ≤ i ≤ m) of
derivation tree π′i and kw′(S

′, s′)σ′ = ku′′(R
′, t) for u′′ v

uv a prefix of uv.
We have that wσ v u, which trivially implies wσ v

uv. We also have w′σ′ v uv. Let w = `′1, . . . , `
′
p and

w′ = `′′1 , . . . , `
′′
q and let r = min{p, q}. We have that

(`′1, . . . , `
′
r)σ = (`′′1 , . . . , `

′′
r )σ′.

We have that σ ∪ σ′ is a unifier of
k`′1,...,`′r ( , s) and k`′′1 ,...,`′′r ( , s′), it follows that
τ ∈ csuAC(k`′1,...,`′r ( , s), k`′′1 ,...,`′′r ( , s′)) exists. As K

is saturated and f, f ′ 6= f+0 , it follows that the statement

h =
(
i`′1,...,`′r (S, S′)⇐ B1, . . . , Bn, B

′
1, . . . , B

′
m

)
τ

resulting from applying the EQUATION saturation rule to f
and f ′ has been generated during the saturation process. The
knowledge base has been updated with this statement. Since
we know that skel(fσ) and skel(f ′σ′) are in normal form,
we have that skel(h) is in normal form, and therefore h is
in K (since S and S′ are necessarily in normal form).

As σ∪σ′ is a unifier of k`′1,...,`′r ( , s) and k`′′1 ,...,`′′r ( , s′)
and as τ ∈ csuAC(k`′1,...,`′r ( , s), k`′′1 ,...,`′′r ( , s′)), it follows
that there exists ω such that σ ∪ σ′ = τω.

We have that ω is grounding for h and that
B1τω, . . . , Bnτω,B

′
1τω, . . . , B

′
mτω ∈ H(Ksolved) with

derivation trees π1, . . . , πn, π′1, . . . , π
′
m and

∑

{i|W(πi)≥l}
S(πi) +

∑

{i|W(π′i)≥l}
S(π′i) = Ŝl(π) + Ŝl(π′)

where Bi = kwi
(Xi, xi) and B′i = kw′i(X

′
i, x
′
i). Therefore,

we have by Lemma 17 that

i`′1,...,`′r (S, S′)τω = i`′1σ,...,`′rσ(R,R′) ∈ H(l,κ)
e (Ksolved).

where κ ≤∑{i|W(πi)≥l} S(πi). As (`′1, . . . , `
′
r)σ is a prefix

of uv, we conclude.
Lemma 24. Let K be a saturated knowledge base. Let
{kwi

(Ri, ti) | 1 ≤ i ≤ n} be a set of deduction state-
ment such that πi ∈ Π′−(Ksolved) is a derivation tree for
kwi

(Ri, ti),
⊕

i∈{1,...,n} ti↓ = 0 and wi ∈ {u, uv} for

some u, v. We have that iuv(
⊕
Ri, 0) ∈ H(l,κ)

e (Ksolved)
for all l and with κ ≤∑i Ŝl(πi).

Proof. We denote kwi
(Ri, ti) by Ki. W.l.o.g. for all i,

we suppose that ti =
⊕

1≤j≤s(i) t
j
i . We prove this lemma

by induction on
∑

i s(i). If there is some kwi(Ri, 0), from
the seed, we have kwi(0, 0) which has a derivation tree π0
in Π′−(Ksolved) and Ŝl(π0) = 0. By Lemma 23, we get
iw(Ri, 0) ∈ H(l,κ)

e (Ksolved) with κ ≤ Ŝl(πi) + Ŝl(π0). We
conclude by induction hypothesis on {Kp|p 6= i} and by
use the CONG rule with ⊕.

Otherwise, since
⊕

i ti↓ = 0, there exist at least Kk

of derivation tree πk, Kj of derivation tree πj such that
tk = t′s ⊕ t′k and tj = t′s ⊕ t′j for some t′s, t

′
k, t
′
j . Let ts be

the t′s of maximal size which satisfies the former relation.
We define Sk to be the set {i|⊕i t

i
k = ts} and define Sj

similarly.
If tk = tj , from Lemma 23, we get iw(Rk, Rj) ∈

H(l,κ)
e (Ksolved) with κ ≤ Ŝl(πk)+ Ŝl(πj). From Lemma 15,

we get iw(Rk ⊕ Rj , 0) ∈ H(l,κ)
e (Ksolved). If the set

contained other predicate than Kk and Kj , we use
our induction hypothesis on the set {Ki|i /∈ {k, j}}, we
get iuv(

⊕
i/∈{k,j}Ri, 0) ∈ H(l,κ′)

e (Ksolved) with κ′ ≤∑
i/∈{k,j} Ŝl(πi). Then we conclude by applying the CONG

rule with ⊕, on the two above identical predicates. Other-
wise we conclude directly.

Otherwise tk 6= tj . We denote by tN =
⊕

i/∈Sk
tik ⊕∑

i/∈Sk
t′ij . We apply Lemma 21 on the suitable f+1 or

f+2 statement (f+1 if ts = tk or ts = tj , f+2 otherwise)
and σ+ : x 7→ tj , y 7→ tk. We get kuv(Rj ⊕ Rk, tN ) ∈
H(l,κ1)

e (Ksolved) with κ1 ≤ Ŝl(πk) + Ŝl(πj). .
We apply our induction hypothesis on the set

{Ki|i /∈ {k, j}} and obtain that iw(
⊕

i/∈{k,j}Ri, 0) ∈
H(l,κ2)

e (Ksolved) with κ2 ≤
∑

i/∈{k,j} Ŝl(πi). Finally, using
CONG, MOD-I and Lemma 15, we get iuv(

∑
i/∈{k,j}Ri ⊕
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Rk ⊕ Rj↓, 0) ∈ H(l,κ)
e (Ksolved) with κ ≤ ∑i Ŝl(πi) which

allows to conclude.
Corollary 1. Let K be a saturated knowledge base. If

ku(R, t) has a derivation tree π ∈ Π′(Ksolved) and
kuv(R

′, t) has a derivation tree π′ ∈ Π′(Ksolved) then
iuv(R,R

′) ∈ H(l,κ)
e (Ksolved) with κ ≤ Ŝl(π) + Ŝl(π′).

Proof. If π and π′ ∈ Π′−(Ksolved), we apply Lemma 23
to get iw(R,R′) ∈ H(l,κ′)

e (Ksolved) with κ′ ≤ Ŝl(π)+Ŝl(π′).
Otherwise, it is a direct consequence of Lemma 24 applied
on the set of conclusions of extract(π) ∪ extract(π′) and
Lemma 15.
Lemma 25. If kw(R1, t) ∈ He(Ksolved) and kw(R2, t) ∈
He(Ksolved) then iw(R1, R2) ∈ He(Ksolved)

Proof. By definition of He, there exist kw(R′1, t) ∈
H(Ksolved), kw(R′2, t) ∈ H(Ksolved) such that iw(R1, R

′
1) ∈

He(Ksolved) and iw(R2, R
′
2) ∈ He(Ksolved). From Corol-

lary 1, we got that iw(R′1, R
′
2) ∈ He(Ksolved). Therefore,

using Lemma 15 we derive that iw(R1, R2) ∈ He(Ksolved).
Proposition 5. If ku(R, t) ∈ He(K) then kuv(R, t) ∈
He(K).

Proof. As ku(R, t) ∈ He(K), it follows that ku(R′, t) ∈
H(K) and iu(R′, R) ∈ He(K) for some R′. By the EX-
TENDK rule, we have that kuv(R

′, t) ∈ H(K) and by
the EXTEND rule, we have that iuv(R

′, R) ∈ He(K).
We conclude by rule EQUATIONAL CONSEQUENCE that
kuv(R, t) ∈ He(K), which is what we had to show.
Definition 19. Given a term t =

⊕
1≤i≤n ti where no ti is

a sum, then width(t) = n− 1

Lemma 26. Let K be a saturated knowledge base. If
{kw(Ri, ti)|i ∈ {1, . . . ,m}} is a set of deduction state-
ments with derivation trees πi ∈ Π′(Ksolved) then

kw(
⊕

1≤i≤m
Ri,

⊕

1≤i≤m
ti↓) ∈ He(Ksolved).

Proof. We proceed by induction on
∑

1≤i≤mwidth(ti).
Base case. (

⊕
1≤i≤m ti)↓ =

⊕
1≤i≤m ti. We show the

base case by an induction on m. If m = 1 the result is
immediate. If m > 1 then for any pair (j, k), we can build
a new derivation tree of kw(Rj ⊕Rk, tj ⊕ tk) from f+0 , πj
and πk. We conclude by applying our induction hypothesis.

Inductive case. (
⊕

1≤i≤m ti)↓ 6=
⊕

1≤i≤m ti. If there
exists j such that πj ∈ Π′+(Ksolved), then we consider πa
and πb its immediate sub-trees which prove kw(Ra, ta) and
kw(Rb, tb). We conclude by induction hypothesis on the
set where kw(Rj , tj) has been replaced by kw(Ra, ta) and
kw(Rb, tb). Otherwise there exist j, k, πj ∈ Π′−(Ksolved)
and πk ∈ Π′−(Ksolved) such that (tj ⊕ tk)↓ 6= tj ⊕ tk.
• If tj = tk, from Lemma 23, we have
iw(Rj , Rk) ∈ He(Ksolved). From Lemma 15, we
have iw(Rj ⊕ Rk, 0) ∈ He(Ksolved). By REFL we
have iw(

⊕
i/∈{j,k}Ri,

⊕
i/∈{j,k}Ri) ∈ He(Ksolved) and

using the CONG rule we obtain that

iw(
⊕

1≤i≤m
Ri,

⊕

i/∈{j,k}
Ri) ∈ He(Ksolved).

By induction hypothesis, we get

kw(
⊕

i/∈{j,k}
Ri,

⊕

1≤i≤m
ti↓) ∈ He(Ksolved)

and we conclude by EQ. CONS.
• If tj 6= tk, there exist t′, t′j , t

′
k such that tj =AC

t′j ⊕ t′ and tk =AC t′j ⊕ t′. Applying Lemma 21
on the suitable f ∈ f+1 ∪ f+2 and the deriva-
tion trees πj and πk we obtain kw(Rj ⊕ Rk, tj ⊕
tk↓) ∈ He(Ksolved). From definition of He, there exists
kw(R′, tj ⊕ tk↓) ∈ H′(Ksolved) of derivation tree π′

and iw(Rj ⊕Rk, R′) ∈ He(Ksolved). By REFL we have
iw(
⊕

i/∈{j,k}Ri,
⊕

i/∈{j,k}Ri) ∈ He(Ksolved) and using
the CONG rule we obtain that

iw(
⊕

1≤i≤m
Ri,

⊕

i/∈{j,k}
Ri ⊕R′) ∈ He(Ksolved).

Since width((tj ⊕ tk)↓) < width(tj) + width(tk),
by induction hypothesis, we get

kw(
⊕

i/∈{j,k}
Ri ⊕R′,

⊕

1≤i≤m
ti↓) ∈ He(Ksolved)

and using EQ. CONSEQ. we conclude that

kw(
⊕

1≤i≤m
Ri,

⊕

1≤i≤m
ti↓) ∈ He(Ksolved).

Lemma 27. Let S be a set of seed statements and let K ∈
sat(Kinit(S)). Then if H ∈ H(S), we have that H ∈
He(Ksolved).

Proof. We prove by induction on the derivation tree
of H ∈ H(S) that each node of the derivation tree is in
He(Ksolved). We proceed by case distinction on the last rule
that has been applied to derive H .
Case: EXTENDK. we have that H = kw(R, t) and
ku(R, t) ∈ H(S) for some prefix u of w, in which
case by the induction hypothesis we have that ku(R, t) ∈
He(Ksolved) and we conclude by Proposition 5.
Case: SIMPLE CONSEQUENCE. There is a statement

f =
(
H ′ ⇐ B′1, . . . , B

′
n

)
∈ S

and a substitution σ grounding for f such that skel(fσ) is
in normal form, H = H ′σ and B′iσ ∈ H(S). By the induc-
tion hypothesis, we have that B′iσ ∈ He(Ksolved). W.l.o.g.
assume that B′i = kw′i(Xi, t

′
i). As B′iσ ∈ He(Ksolved), we

have by definition of He that there exist R′i such that

B′′i = kw′iσ(R′i, t
′
iσ) ∈ H(Ksolved), (3)

iw′iσ(R′i, Xiσ) ∈ He(Ksolved) (4)

for all 1 ≤ i ≤ n and let π′′i be a derivation tree in
Π′(Ksolved) of B′′i .

But w′iσ is a prefix of w, where w is such that H =
predicatew(. . .) with predicate ∈ {r, k}. Note that as S is a
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set of seed statements, predicate 6∈ {i, ri}. By applying the
EXTEND rule to Equation (4), we obtain

iw(R′i, Xiσ) ∈ He(Ksolved). (5)

Let σ′ be the substitution defined to be σ except that it
maps Xi to R′i for all 1 ≤ i ≤ n. We distinguish several
cases depending on the statement f .

1) Case where f is f+0 , f+1 , f+2 , f+3 or f+4 . We conclude
by applying Lemma 26 and rules of He.

2) Case where f is not f+1 , f+2 , f+3 or f+4 .
We will show that H ′σ′ ∈ He(Ksolved). As K was
updated by f , there are three cases:

a) if f ∈ K, we conclude by Lemma 21 or Lemma 17
(depending on the predicate).

b) Otherwise, f⇓ ∈ Ksolved or f⇓ =
(
kw(R, t) ⇐

C1, . . . , Cm

)
and there exists R′ such that

(
kw0

(R′, t)⇐ B1, . . . , Bn

)
∈ conseq(Ksolved)

and such that(
iw0

(R↓, R′↓)⇐ B1, . . . , Bn

)
∈ Ksolved.

In this case we conclude by Lemma 20.
We have shown that H ′σ′ ∈ He(Ksolved). We distinguish

several cases depending on predicate:
• predicate = r: In such a case, we have that H ′σ′ =
H ′σ = H and we easily conclude.

• predicate = k: In such a case, we have that H ′σ′ =
kw(Rσ′, tσ′). Relying on Equation 5 and applying the
rules CONG and REFL, we deduce that: iw(Rσ,Rσ′) ∈
He(Ksolved). Since kw(Rσ′, tσ′) ∈ He(Ksolved) and
tσ = tσ′, using Proposition 4, we conclude that
kw(Rσ, tσ) ∈ He(Ksolved).

5. Effectiveness of the procedure

The proof of Lemma 1 is essentially the same as the
proof of the Akiss paper without Xor. Here we just rewrite
it with our notation.

We let ⇒ denote the saturation relation. We let ⇒=

denote the reflexive closure of ⇒.
Lemma 28. Let K be a knowledge base and NP

pub ⊆ Npub a
set of public names such that names(K)∩NP

pub = ∅. Let
K1 ⊆ EXT(K) If h is a statement such that names(h)∩
NP

pub = ∅, then the following sets corresponding to all
possible updates are equal:

{(K ]K1) d h} = {(K d h) ]K1}
.

Proof. If h is not solved or if it is not a deduction
statement, we have that (K ]K1)dh = (K ]K1)∪{h} =
(K ∪{h})]K1 = (K dh)]K1. If h is a solved deduction
statement, let

h⇓ = k`1,...,`k(R, t)⇐ k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn).

We distinguish two cases:
1) either

(K]K1)dh = (K]K1)∪{h⇓} = (K∪{h⇓})]K1.

It follows that K dh = K ∪{h⇓} and we immediately
conclude by replacing K ∪ {h⇓} by K d h in the
equation above.

2) or k`1,...,`k(R′, t) ⇐
k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈
conseq((K ] K1)solved) for some R′ and a choice
has been made to add the identical. In this case,
(K ]K1) d h = (K ]K1) ∪ {f} where

f =
(
i`1,...,`k(R,R′)⇐ {k`1,...,`ij (Xj , xj)}j∈{1,...,n}

)
}.

To conclude we show the following claim.
If names(t) ∩ NP

pub = ∅ and k`1,...,`k(R′, t) ⇐
k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈
conseq((K ] K1)solved) then k`1,...,`k(R′, t) ⇐
k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈
conseq(Ksolved)

To proof this claim we proceed by in-
duction on the size of the proof tree of
k`1,...,`k(R′, t) ⇐ k`1,...,`i1 (X1, x1), . . . ,
k`1,...,`in (Xn, xn) ∈ conseq((K ]K1)solved).
Base case:. we need to consider two cases according
to which rule has been applied.
• AXIOM: the rule does not depend on the knowledge

base and we trivially conclude.
• RES: we have that n = 0, i.e., H ⇐ ∈ (K ∪
K1)solved and Hσ = k`1,...,`k(R′, t). As names(t) ∩
NP

pub = ∅ we have that H ⇐ ∈ Ksolved. Hence,
k`1,...,`k(R′, t) ∈ conseq(Ksolved).

Inductive case:. We suppose that the proof ends
with an application of the RES rule. We have
that H ⇐ B1, . . . , Bm ∈ (K ∪ K1)solved,
Biσ ⇐ k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈
conseq((K ] K1)solved) and Hσ = k`1,...,`k(R′, t).
Let H = ku(S, t′) and Bi = kui

(Yi, yi). As
Hσ = k`1,...,`k(R′, t) and names(t) ∩ NP

pub = ∅,
by inspection of the statements in K1, it must be
that H ⇐ B1, . . . , Bm ∈ Ksolved. Moreover, as
t′σ = t we have by hypothesis that t′σ ∩ M0 = ∅
and hence t′ ∩ M0 = ∅. As yi ∈ vars(t′)
we have that yiσ ∩ M0 = ∅ and we can
apply our induction hypothesis to conclude that
Biσ ⇐ k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈
conseq(Ksolved) for 1 ≤ i ≤ n. Hence,
as H ⇐ B1, . . . , Bm ∈ Ksolved and
Biσ ⇐ k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈
conseq(Ksolved) for 1 ≤ i ≤ n we conclude that
k`1,...,`k(R′, t) ∈ conseq(K).

Lemma 29. Let K be a knowledge base and NP
pub ⊆ Npub

a set of public names such that names(K)∩NP
pub = ∅.

Let K1 ⊆ ext(K). If

K ]K1 ⇒ K ′′
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then K ′′ = K ′ ] K2 with K ⇒= K ′, K2 ⊆ KNP
pub,R

′

where R′ is the set of solved reach statements in K ′ and
names(K ′) ∩NP

pub = ∅.
Proof. We perform a case distinction depending on which
saturation rule triggered:

1) if rule RESOLUTION triggered, we will show that f, g ∈
K.
Indeed, no statement

(
k(m,m) ⇐

)
∈ K1 can play

the role of g in the RESOLUTION saturation rule since
t′ = m must unify with t 6∈ X . Therefore t must be
m, but m 6∈ names(K) by hypothesis and therefore t
cannot be m.
No statement in K1 can play the role of f in the RESO-
LUTION saturation rule since they have no antecedents.
Therefore f, g ∈ K and names(h) 6∈ NP

pub. We choose
K ′ = Kdh, K2 = K1 and we conclude by Lemma 28.

2) if rule EQUATION triggered, we distinguish three cases:

a) if a statement
(
k(m,m) ⇐

)
∈ K1 plays the role

of f in the EQUATION saturation rule, we have that
t = m. As t′ unifies with m, we have that either
t′ = m or that t′ is a variable. The second case is
not possible since g must be well-formed. Therefore
t′ = m. As m 6∈ names(K) by hypothesis it follows
that g ∈ K1 and therefore g = k(m,m). Therefore
the resulting statement is i(m,m). We choose K2 =
K1 ∪ {i(m,m)}, K ′ = K to conclude.

b) if a statement
(
k(m,m) ⇐

)
∈ K1 plays the role

of g, the reasoning is analogous to the case above
c) otherwise f, g ∈ K. Therefore names(h) ∩ NP

pub =
∅. We choose K ′ = Kdh and K2 = K1 to conclude.

3) if rule TEST triggered, we distinguish two cases:

a) if
(
i(m,m) ⇐

)
∈ K1 plays the role of f , then

g = ru ⇐ B1, . . . , Bn ∈ K. We choose K ′ = K and
K2 = K1 ∪ {riu(m,m)⇐ B1, . . . Bn} to conclude.

b) otherwise f ∈ K. The statement g must also be in
K since g is a reachability statement and K1 does
not contain reachability statements. We choose K ′ =
K d h and K2 = K1 to conclude.

From the above lemma we can immediately conclude
that if NP

pub = Npub \ names(K) and

K ∪ {k(m,m)}m∈NP
pub
⇒∗ K ′

and K ′ is saturated, then

K ⇒∗ K ′′

with K ′′ saturated and K ′ = K ′′ ∪KNP
pub,R

′′ where R′′ is
the set of solved reach statements in K ′′. This means that
there is no need to keep track of all (an infinite number of)
names during the saturation process.

Lemma 30. The definition of conseq(K) yields a direct
recursive algorithm which moreover computes R.

Proof.

• (Axiom) Check whether t = xj for 1 ≤ j ≤ n. If this
is the case return (yes, Xj).

• (Res) Otherwise, guess a (solved) statement
ku(R′, t′) ⇐ ku1(Y1, y1), . . . kuk

(Yk, yk) ∈ K
and compute substitution σ such that
k`1,...,`k(R′, t) = ku(R′, t′)σ. Check recursively
whether ∃Ri.kui(Ri, yi)σ ⇐ k`1,...,`i1 (X1, x1), . . . ,
k`1,...,`in (Xn, xn) ∈ conseq(K) for 1 ≤ i ≤ k. In
that case return (yes, R′[Yi 7→ Ri]1≤i≤n). Otherwise
return no.

Termination is ensured because the size of t
when checking whether ∃R.k`1,...,`k(R, t) ⇐
k`1,...,`i1 (X1, x1), . . . , k`1,...,`in (Xn, xn) ∈ conseq(K)
strictly decreases in each recursive call. Indeed, when
ku(R′, t′)⇐ ku1

(Y1, y1), . . . kuk
(Yk, yk) ∈ K we have that

t′ 6∈ X because it is well-formed and yi ∈ vars(t′) by
definition of a statement. Hence, |yiσ| < |t′σ| = |t|.

6. Correction of the algorithm

In order to prove Theorem 3 we need the following
technical lemmas.
Lemma 31. Let P be a ground process and K ∈

sat(Kinit(P )). Then for any statement f ∈ K, we have
that:

1) if f =
(
ril1,...,ln(R,R′) ⇐ {kwi(Xi, ti)}i∈{1,...,m}

)

and x ∈ vars(lk) then there exists wj = l1, . . . , lk′
with k′ < k such that x ∈ vars(tj).

2) if f =
(
kl1,...,ln(R, t)⇐ {kwi(Xi, ti)}i∈{1,...,m}

)
and

x ∈ vars(t) then x ∈ vars(t1, . . . , tm).

Proof. The seed knowledge base satisfies the above
properties and they are preserved by update and saturation.
�
Lemma 32. Let P0 be a ground process, ϕ0 = ∅ the

empty frame, and {c1, . . . , ck} names such that ci 6∈
names(P0) for all 1 ≤ i ≤ k. If

(P0, ϕ0)
L1==⇒ (P1, ϕ1)

L2==⇒ . . .
Ln==⇒ (Pn, ϕn)

and ∀1 ≤ i ≤ k
• either ci 6∈ names(L1, . . . , Ln)
• or there exist Ri and ti such that ϕidx(ci)−1θ `Ri

ti
where θ = {ci 7→ ti}i∈{1,...,k} and idx(ci) = min{j |
ci ∈ names(Lj)}

then

(P0, ϕ0)
L1θ
′

===⇒ (P1θ, ϕ1θ)
L2θ
′

===⇒ . . .
Lnθ

′
===⇒ (Pnθ, ϕnθ),

where θ′ = {ci 7→ Ri}i∈{1,...,k}.
Proof. By induction on the length n of the derivation. �

Lemma 33. Let P be a ground process, {c1, . . . , ck} be
public names not occurring in P , θ : {c1, . . . , ck} →
T (Σ,N ), and θ′ : {c1, . . . , ck} → T (Σ,Npub ∪W).
If P |= rw, P |= kw(R, t), and P |= kwθ(ciθ

′, ciθ) then
P |= kwθ(Rθ

′, tθ).
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Proof. Suppose that P |= rwθ. Otherwise the conclusion
trivially follows from the semantics of the k predicate. Let
w = `1 . . . `n.

As P |= rw, we have that (P, ∅) L1,...,Ln
======⇒ (Q,ϕ) such

that for all 1 ≤ i ≤ n it holds that Liϕ↓ =AC `i↓.
As P |= rwθ, we have that (P, ∅) L′1,...,L

′
n======⇒ (Q′, ϕ′) such

that for all 1 ≤ i ≤ n it holds that L′iϕ
′↓ =AC `iθ↓.

By induction on n we can show that ϕ′ =AC ϕθ↓.
Finally, we show by induction on R that ϕ `R t and
ϕθ `ciθ′ ciθ (for 1 ≤ i ≤ k) implies that ϕθ `Rθ′ tθ.
�
Lemma 34. Let P be a ground process and ϕ a frame

such that (P,ϕ)
in(d,R)
====⇒ (P ′, ϕ′). Let R′ be such that

(R = R′)ϕ. Then we have that (P,ϕ)
in(d,R′)
=====⇒ (P ′, ϕ′).

Proof. R and R′ are recipes for the same term in ϕ and
therefore the transition still holds. �
Theorem 3. Let P be a ground process, and NP

pub ⊆ Npub

be the finite set of public names occurring in P . Let P
be a protocol, and K0 ∈ sat(Kinit(seed(P,NP

pub))). We
have that:
• if P v P then REACH-IDENTITY(K0

solved,P) holds;
• if P is determinate and REACH-IDENTITY(K0

solved,P)
holds then P v P .

Proof. Let K ∈ sat(Kinit(P )). By Lemma 1, we have
that Ksolved = K0

solved ∪ KR for some KR as defined in
Lemma 1. We first prove that if REACH-IDENTITY fails
then P 6v P . In such a case, we have that
(
ril1,...,ln(R,R′)⇐ {kwi

(Xi, xi)}i∈{1,...,m}
)
∈ K0

solved

1) either (P, ∅) 6 M1,...,Mn
======⇒ (P ′, ϕ) for any (P ′, ϕ). How-

ever, by Theorem 2 (soundness of Ksolved and thus
of K0

solved), we have that there exists (P ′′, ϕ′′) such
that (P, ∅) M1,...,Mn−−−−−−→ (P ′′, ϕ′′). Hence, we have that
P 6v P .

2) or for any (P ′, ϕ) such that (P, ∅) M1,...,Mn
======⇒ (P ′, ϕ)

and any grounding substitution ω we have that
Rωϕ↓ 6=AC R

′ωϕ↓. By Theorem 2, we have that there
exists (P ′′, ϕ′′) such that (P, ∅) M1,...,Mn−−−−−−→ (P ′′, ϕ′′)
and Rωϕ′′↓ =AC R

′ωϕ′′↓. Hence, we have that P 6v P .

Next, we prove that if P 6v P and P determinate, then
REACH-IDENTITY fails. We assume that P 6v P , and that
REACH-IDENTITY holds, and we derive a contradiction. As
P 6v P , it follows that there exist L1, . . . , Ln, and ϕ such
that (P, ∅) L1,...,Ln−−−−−−→ (P ′, ϕ) and (R =E R

′)ϕ, and

1) either (P, ∅) 6 L1,...,Ln
======⇒ (Q′, ψ) for any (Q′, ψ);

2) or (R 6=E R′)ψ where ψ is the frame reached by P
after the execution of L1, . . . .Ln.

We consider such a witness of minimal length. Note
that, since P is determinate, even if such a frame ψ is not
unique, they all satisfy the same tests. Note also that we can

w.l.o.g. consider that at least one test holds in P ′ (possibly
considering a trivial one, i.e. 0 = 0).

As (P, ∅) L1,...,Ln−−−−−−→ (Pn, ϕn) = (P ′, ϕ) and (R =E

R′)ϕn, by completeness, we have that:

iL1ϕn↓,...,Lnϕn↓(R,R
′) ∈ He(Ksolved).

In the second case, we also have that (R 6=E R
′)ψ. From the

fact that iL1ϕn↓,...,Lnϕn↓(R,R
′) ∈ He(Ksolved) and (R 6=E

R′)ψ, we can show that there exist recipes RA, R
′
A and

k ≤ n such that iL1ϕn↓,...,Lkϕn↓(RA, R
′
A) ∈ H(Ksolved) but

(RA 6= R′A)ψ. Actually, we have that k = n in order to not
contradict the minimality of n.

We now choose among all the minimal witnesses (w.r.t.
the length) of non-inclusion, one such that Ŝn(π) is min-
imal too. More formally, we consider a witness of non-
inclusion such that (n, Ŝn(π)) is minimal (with a lexical
order) where n is the length of the witness and π is the
derivation tree in Π′(Ksolved) of iL1ϕn↓,...,Lnϕn↓(RA, R

′
A).

We denote by πm the derivation tree of such a minimal
witness iL1ϕn↓,...,Lnϕn↓(RA, R

′
A) ∈ H(Ksolved).

In the first case (item 1), we simply have to consider
a witness of non-inclusion of minimal length, and we may
assume that RA = R′A = 0 (in which case its derivation
tree πm has size Ŝn(πm) = 0), and of course, we do not
have that (RA 6= R′A)ψ. Now, considering such a minimal
witness, we have that:

(P, ∅) L1−−→ (P1, ϕ1)
L2−−→ . . . (Pn−1, ϕn−1)

Ln−−→ (Pn, ϕn)

By Theorem 2 (completeness), we know that:

rL1ϕn↓,...,Lnϕn↓ ∈ He(Ksolved).

By the definition of He, we have that it contains no reach-
ability statement in addition to those in H. Therefore, we
have that:
• rL1ϕn↓,...,Lnϕn↓ ∈ H(Ksolved), and
• iL1ϕn↓,...,Lnϕn↓(RA, R

′
A) ∈ H(Ksolved).

Thanks to Lemma 22, we deduce that:

riL1ϕ↓,...,Lnϕ↓(RA, R
′
A) ∈ H(n,Ŝn(πm))

e (Ksolved).

Therefore there exists a statement

f =
(
ril1,...,ln(RB , R

′
B)⇐ {kwi

(Xi, xi)}i∈{1,...,m}
)
∈ Ksolved

and a substitution τ grounding for f such that:
• kwiτ (Xiτ, xiτ) ∈ H(Ksolved) of derivation tree πi (for

all 1 ≤ i ≤ m),
• l1τ, . . . , lnτ = L1ϕn↓, . . . , Lnϕn↓, and
• RBτ↓ = RA↓, and R′Bτ↓ = R′A↓.

Due to the shape of f (note that (RB , R
′
B) 6= (n, n) for

any public name n), we have that f ∈ K0
solved). We suppose

w.l.o.g. that i ≤ j implies wi v wj for f .
We also build another substitution β as follows: for each

1 ≤ i ≤ m, consider the set compi = { j |xj = xi }.
Consider the map least : { 1 ≤ i ≤ m } → { 1 ≤ i ≤ m }
defined as least(i) = xr where r = min{j | wj ∈ compi}.
Finally β is the substitution such that β(Xi) = Xleast(i).
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Let c1, . . . , ck be fresh public names and let

σ : vars(l1, . . . , ln) ∪ {x1, . . . , xm} → {c1, . . . , ck}
be a bijection of inverse σ−1. We have that:
• k(cj , cj)⇐ ∈ Kinit(P ) for all 1 ≤ j ≤ k;
• kwiσ(Xiσ

′, xiσ) ∈ H(Ksolved) for all 1 ≤ i ≤ m;
where dom(σ′) = {X1, . . . , Xm} and σ′(Xi) = xiσ for all
1 ≤ i ≤ m. We also define the mapping σ′−1 to be such
that dom(σ′−1) = {c1, . . . , ck} and σ′−1(ci) = Xj where
j is such that σ′(Xj) = ci and Xjβ = Xj . Instantiating f
with σ ∪ σ′, we obtain that

ril1σ,...,lnσ(RBσ
′, R′Bσ

′) ∈ H(Ksolved).

By Theorem 2 (soundness), P |= ril1σ,...,lnσ(RBσ
′, R′Bσ

′).
Therefore, there exist recipes R′i (for all 1 ≤ i ≤ n such
that li = in(di, ti)) such that P |= kl1σ,...,li−1σ(R′i, tiσ). By
Theorem 2 (completeness) and definition of He there exist
recipes Ri such that kl1σ,...,li−1σ(Ri, tiσ) ∈ H(Ksolved), and
il1σ,...,li−1σ(Ri, R

′
i) ∈ He(Ksolved).

Let Mi = li if li ∈ {test, out(c) | c ∈ Ch} and let
Mi = in(di, R

′′
i ) if li = in(di, ti) for all 1 ≤ i ≤ n

where the recipes R′′i correspond to those computed during
the algorithm. As REACH-IDENTITY(Ksolved,P) holds there
exists Q′0 ∈ P such that

(Q′0, ψ
′
0)

M1==⇒ (Q′1, ψ
′
1)

M2==⇒ . . .
Mn==⇒ (Q′n, ψ

′
n)

where ψ′0 = ∅.
Let i be such that li = in(di, ti). Applying Lemma 31

to f we have that for all x ∈ vars(ti) there exists wj such
that |wj | < i and x = xj . We have that kwjτ (Xjτ, xjτ) ∈
H(Ksolved), and kwjτ (Xjβτ, xjτ) ∈ H(Ksolved) by choice
of f , τ and β. By Theorem 2 (soundness), we ob-
tain that P |= kwjτ (Xjβτ, xjτ). Hence, as |wj | < i,
P |= kl1τ,...,li−1τ (Xjβτ, xjτ). We rewrite it as P |=
kl1σσ−1τ,...,li−1σ(σ−1τ)(Xjβσ

′(σ′−1τ), xjσ(σ−1τ)). We al-
ready established that P |= rl1σ,...,lnσ, and we know that
kl1σ,...,li−1σ(Ri, tiσ) ∈ H(Ksolved) and therefore by Theo-
rem 2 (soundness) we have that P |= kl1σ,...,li−1σ(Ri, tiσ).
We apply Lemma 33 to obtain that

P |= kl1τ,...,li−1τ (Riσ
′−1τ, tiτ). (6)

Now, we consider θ a mapping with dom(θ) =
{c1, . . . , ck} such that θ = θn and θi is defined as:
• θ0 is the identity function; and
• θj(ci) = σ′−1τ(ci)ψ

′
idx(ci)−1θ

j−1 where 1 ≤ j ≤ n,
dom(θj) = {ci | idx(ci) ≤ j} and where idx(ci) =
min{k | ci ∈ names(Mk)}.

By applying Lemma 32 inductively on n we have that

(Q′0, ψ
′
0) = (Q′0θ, ψ0θ)

M1σ
′−1τ

======⇒ (Q′1θ, ψ
′
1θ)

M2σ
′−1τ

======⇒
. . .

Mnσ
′−1τ

======⇒ (Q′nθ, ψ
′
nθ).

Now we show by induction on n that

(Q′0θ, ψ0θ)
L1==⇒ (Q′1θ, ψ

′
1θ)

L2==⇒ . . .
Ln==⇒ (Qnθ, ψ

′
nθ).

We assume by the induction hypothesis that

(Q′0θ, ψ0θ)
L1==⇒ (Q′1θ, ψ

′
1θ)

L2==⇒ . . .
Li−1
===⇒ (Q′i−1θ, ψ

′
i−1θ)

and we show that

(Q′i−1θ, ψ
′
i−1θ)

Li=⇒ (Q′iθ, ψ
′
iθ).

We will show that Li and Miσ
′−1τ satisfy the conditions

of Lemma 34 which allows us to conclude. Indeed, either
Li = Miσ

′−1τ (in the case of a test or out action), or
Li = in(di, R

′′
i ) and Miσ

′−1τ = in(di, Riσ
′−1τ) (in the

case of a in action). In the second case, we need to show
that (Riσ

′−1τ = R′′i )(ψ′i−1θ). By the definition of |=, we
have that P |= kl1τ,...,li−1τ (R′′i , tiτ). We have previously
shown in (6) that P |= kl1τ,...,li−1τ (Riσ

′−1τ, tiτ) and
therefore P |= il1τ,...,li−1τ (Riσ

′−1τ,R′′i ), or, equivalently,
(Riσ

′−1τ = R′′i )ϕi−1. By the hypothesis, we have that there
exists Q ∈ P such that

(Q, ∅) L1==⇒ (Q1, ψ1)
L2==⇒ . . .

Li−1
===⇒ (Qi−1, ψi−1),

and (Riσ
′−1τ = R′′i )ψi−1. By determinacy of Q it follows

that ψi−1 ≈s ψ′i−1θ and therefore (Riσ
′−1τ = R′′i )ψ′i−1θ

as well. As the hypothesis of Lemma 34 are satisfied, we
can conclude.

We have shown that (P, ∅) L1,...,Ln
======⇒ (Q′nθ, ψ

′
nθ), there-

fore the Hypothesis 1 cannot hold.

We know show that Hypothesis 2 can not hold too.
As the equational theory is stable by substitution of

terms for names and we know that (RBσ
′ =E R′Bσ

′)ψ′n,
we deduce that [(RBσ

′σ′−1τ =E R
′
Bσ
′σ′−1τ)ψ′n]θ.

We claim that (RBσ
′ψ′n)θ = (RBβτ)(ψ′nθ). The proof

is by induction on the size of RB . The only interesting case
is the case when RB is Xi for some 1 ≤ i ≤ m. In this
case, we have that (RBσ

′ψ′n)θ = cjθ where cj = σ(xi).
By construction of θ, cjθ = τ ◦ σ′−1(cj)(ψ

′
nθ) and

τ ◦ σ′−1(cj) is (by construction) Xiβτ . Hence we get that
(Xiσ

′ψ′n)θ = (Xiβτ)(ψ′nθ). Similarly, we can show that
(R′Bσ

′ψ′n)θ = (R′Bβτ)(ψ′nθ). Hence,

(RBβτ)(ψ′nθ) =E (R′Bβτ)(ψ′nθ).

Now, thanks to determinacy, we have that (R′Bβτ =E

R′Bβτ)ψ where ψ is the frame (up to static equivalence)
reached by P after L1, . . . , Ln.

We now show that:

(RBβτ =E R
′
Bβτ)ψ implies (RBτ =E R

′
Bτ)ψ.

Going back to the statement f , we consider all pairs
(i, j) such that xi = xj . We show that (Xiτ =E Xjτ)ψ.
We distinguish three cases:

1) Case:W(πi) < n andW(πj) < n. In such a case, from
Corollary 1, we have iL1ϕn↓,...,Lkϕn↓(Xiτ,Xjτ) ∈
H(k,κ)

e (Ksolved) for some k < n and κ. Hence we have
(Xiτ =E Xjτ)ϕk By minimality of n we also have
that (Xiτ =E Xjτ)ψ.

2) Case:W(πi) = n andW(πj) = n. In such a case, from
Corollary 1, we have iL1ϕn↓,...,Lnϕn↓(Xiτ,Xjτ) ∈
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H(n,κ′)
e (Ksolved) with κ′ ≤ Ŝn(πi)+ Ŝn(πj). Hence we

have (Xiτ =E Xjτ)ϕ. Since Ŝn(πi) ≤ S(πi)− 1 (the
root node is not counted) and S(πi)+S(πj) ≤ Ŝn(πm),
we have κ′ < Ŝn(πm). By minimality of our witness,
we also have that (Xiτ =E Xjτ)ψ.

3) CaseW(πi) = n andW(πj) < n. In such a case, from
Corollary 1, we have iL1ϕn↓,...,Lnϕn↓(Xiτ,Xjτ) ∈
H(n,κ′)

e (Ksolved) with κ′ ≤ Ŝn(πi) since Ŝn(πj) = 0.
Hence we have (Xiτ =E Xjτ)ϕ. Since Ŝn(πi) ≤
S(πi)− 1 (the root node is not counted) and S(πi) ≤
Ŝn(πm), we have κ′ < Ŝn(πm). By minimality of our
witness, we also have that (Xiτ =E Xjτ)ψ.

From the above equalities, we have that
• (RBτ =E RBβτ)ψ,
• (R′Bτ =E R

′
Bβτ)ψ,

Therefore, we get (RBτ =E R′Bτ)ψ and hence (RA =E

R′A)ψ, thus obtaining a contradiction.
As both cases yield a contradiction, it follows that if P 6v P
then REACH-IDENTITY(K0

solved,P) fails. �
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